
CMSC 131- Lecture Set 11

Lecture Set #11:
Polymorphism Introduction

1. Wrappers
2. Interfaces

1

CMSC 131- Lecture Set 11 2

Wrappers
We may want to treat primitives as though they were objects
For example, generic routines can be implemented using interfaces … but they are not
usable on primitive types
To overcome this problem, Java provides wrappers for primitive types

Wrappers: classes whose objects contain single values of the “wrapped type”

Wrappers convert easily to and from that “wrapped type”

Wrappers also contain other useful conversion operations (to / from String, etc.)

Wrappers included in java.lang:

● Byte

● Short

● Integer

● Long

● Float

● Double

● Character

● Boolean

CMSC 131- Lecture Set 11 3

The Integer Wrapper

The documentation is on-line at http://java.sun.com/j2se/1.5.0/docs/api/
Notes

Immutable

Constructors

Implements Comparable

● Documentation says “Comparable<Integer>”

● Comparable in Java 5.0 is a interface

Has compareTo method.

http://java.sun.com/j2se/1.5.0/docs/api/

CMSC 131- Lecture Set 11 4

Code Re-use

Many operations recur in programming
sorting

max / min

● (These operations may apply to strings, numbers, etc.)

Desirable: one implementation!
Less coding

Less likely to have typos

Easier maintenance of code

CMSC 131- Lecture Set 11 5

Polymorphism
Using an interface we can create one variable that can reference objects
different types (i.e. Comparable variable referencing Integers, Strings or
Cats; UMStudent variable referencing CSMajor, CEMajor or PsychMajor)
This form of “generalization” is called polymorphism

Hallmark of OO languages

Allows application of same code to objects of different types

Polymorphism: “A variable that takes on many shapes.”

Interfaces: one mechanism Java provides for polymorphism
a collection of prototypes (method prototypes but no bodies) aka
abstract methods

A class C implements an interface I

● If and only if C provides implementations of all of I’s abstract
methods

A class implementing an interface can also provide other methods or
implement other interfaces

CMSC 131- Lecture Set 11 6

In class Demo: Implementing a
method using the Integer class

Create objects of type Integer
using the constructor

can be based on int type values or variables

Create an array of Integer type object references and those objects of type
Integer
Use the API to access information about the data in the Integer class
Expand this example to Strings
Expand this example to Cats

CMSC 131- Lecture Set 11 7

Adapting Cat to Implement
Comparable

The Comparable Interface
insists that I must implement compareTo method which has
the following prototype:

int compareTo(Object o)

it must return a negative if the current object is less, a positive
if the current object is greater or a 0 if they are the same.

What is Object?
Type of all possible objects in any class

Shortcoming of (earlier) Java: no good way to say “same
type as this”

Instead: Implementation must take any object

CMSC 131- Lecture Set 11 8

What about int? char?

Polymorphic findMin can be used on any class implementing Comparable
What about primitive types (int, char, double, etc.)?

They are not classes

So they do not implement Comparable

Hence findMin cannot be used on them

That’s why we use wrappers!

	Slide 1
	Wrappers
	The Integer Wrapper
	Code Re-use
	Polymorphism
	In class Demo: Implementing a method using the Integer class
	Adapting Cat to Implement Comparable
	What about int? char?

