
CMSC 131 - Lecture Set #15

Lecture Set #15:
Inheritance

Inheritance
l Conceptual
l Is-A relationship compared to contains-a
l Terminology
l Overloading compared to Overriding
l super
l isInstanceOf and getClass()

1

CMSC 131 - Lecture Set #15 2

Inheritance
A crucial feature of object-oriented programming languages

One class (derived class, subclass, child class) is constructed …

… by including (extending, inheriting) information …

… from another (base class, superclass, parent class) …

… and adding new information / redefining existing

Example
Base class: Clock

● setTime
● getTime
● tick

Derived class: Alarm Clock
● Same methods as Clock plus a few additional ones: setAlarm, ring

CMSC 131 - Lecture Set #15 3

Can We Avoid Code Copying
and therefore redundancy?

Alarm Clock “IS-A” Clock
Operations on Clock (e.g. setTime) should be inherited by Alarm Clock
Alarm Clock should only have to add information specific to alarm clocks

setAlarm

ring

Inheritance provides just this capability

CMSC 131 - Lecture Set #15 4

Inheritance
One class (derived class, subclass, child class) is constructed by including
(extending, inheriting) information from another (base class, superclass,
parent class) then also adding new information and/or redefining existing
information

To derive a class D from a base class B, use:
● public class D extends B { … }
● public class AlarmClock extends Clock { … }

Derived class inherits all instance variables, methods from base class. It
can also define new instance variables, methods

Polymorphism: object in derived class can be used anywhere base class is
expected (an AlarmClock “is a” Clock!)

Clock x = new Clock(); //OK

Clock y = new AlarmClock(); //OK

AlarmClock z = new AlarmClock(); //OK

AlarmClock w = new Clock(); //NOT OK

CMSC 131 - Lecture Set #15 5

Inheritance vs. Composition

Inheritance: a way to build new classes out of old ones
Objects in subclass inherit data, methods from superclass

Object in a subclass “is-a”(n) object in superclass

Association: another way to build new classes out of old
ones

Class definitions may include instance variables which are
objects of other class types

Object in a new class “has-a”(n) object in the original class

Composition: the strongest form of association – when the
lifetime of the enclosed object is completely dependant on the
lifetime of the object that contains it

CMSC 131 - Lecture Set #15 6

Implements vs. Extends
When Defining a Class

implements:
Keyword followed by the name of an INTERFACE

Interfaces only have method PROTOTYPES

You CANNOT create on object of an interface type

Can have a reference of the interface type point to an object of the class that
implements it

extends:
Keyword followed by the name of a CLASS

That class contains full method DEFINITIONS

You CAN create objects of that base class type

Can have reference of the base class type point to an object of the class that
extends it

CMSC 131 - Lecture Set #15 7

Inheritance More Generally
Classes / objects have a natural “is-a” hierarchy
Object-oriented programming provides mechanisms for exploiting this for

Code re-use

● Common operations implemented in super classes

Polymorphism

● Objects in subclasses can be used wherever superclass objects are needed

Shape

Circle RectangleTriangle

Right-Triangle Equilateral-Triangle

Animal

Insect ReptileMammal

Cat DogPrimate

Human Ape Homer

CMSC 131 - Lecture Set #15 8

Example: People at University

Base class: person
Derived classes: student, faculty, administrator
Derived from those: undergrad, grad, instructor,
professor,…

Person

Student Faculty Administrator

Undergrad GradStudent Instructor Professor … …

Person

Student Faculty

CMSC 131 - Lecture Set #15 9

University Person Example

class: Person
instance variables:
 String name
 String idNum
methods:
 Person(…) [various]
 String getName()
 String getIdNum()
 void
setName(String)
 void
setIdNum(String)
 String toString()
 boolean
equals(Person)

class: Student
instance variables:
 int admitYear
 double gpa
methods:
 Student(…) [various]
 int getAdmitYear()
 double getGpa()
 void setAdmitYear(int
)
 void setGpa(double)
 String toString()
 boolean
equals(Student)

extends Person

class: Faculty
instance variables:
 int hireYear
methods:
 Faculty(…) [various]
 int hireYear()
 void setHireYear(int)
 String toString()
 boolean
equals(Faculty)

extends Person

CMSC 131 - Lecture Set #15 10

Method Overriding
A derived class can define new instance variables and methods (e.g. hireYear and
getHireYear())
A derived class can also redefine (override) existing methods

● public class Person {

● …

● public String toString() { … }

● }

● public class Student extends Person {

● …

● public String toString() { … }

● }

● Student bob =

● new Student("Bob Goodstudent","123-45-6789",2004,4.0);

● System.out.println("Bob's info: " + bob.toString());

Overrides base-class
definition of this method

Since bob is Student,
Student toString used

CMSC 131 - Lecture Set #15 11

Overriding vs. Overloading
Overriding: a derived class defines a method with same name, parameters as base
class
Overloading: two or more methods have the same name, but different parameters
Example

● public class Person {

● public void setName(String n) { name = n; }

● …

● }

● public class Faculty extends Person {

● public void setName(String n) {

● super.setName(“The Evil Professor ” + n);

● }

● public void setName(String first, String last) {

● super.setName(first + “ ” + last);

● }

● }

Base class setName()

Overriding

Overloading

CMSC 131 - Lecture Set #15 12

Early vs. Late Binding
Consider:

● Faculty carol =

● new Faculty("Carol Tuffteacher","999-99-9999", 1995);

● Person p = carol;

● System.out.println(p.toString());

Which version of toString – Person or Faculty – is called?
Early (static) binding

● p is declared to be of type Person

● Therefore, the Person version of toString is used

Late (dynamic) binding

● The object to which p refers was created as Faculty object

● Therefore, the Faculty version of toString is used

Java uses late binding (C++ by default uses early binding)
Early binding is more runtime efficient (decisions about method versions can be made at
compile time)

Late binding respects encapsulation (object defines its operations when it is created)

CMSC 131 - Lecture Set #15 13

Polymorphism
Java’s late binding makes it possible for a single reference variable to refer to
objects of many different types. Such a variable is said to be polymorphic
(meaning having many forms).
Example: Create an array of various university people and print.

● Person[] list = new Person[3];

● list[0] = new Person("Col. Mustard", "000-00-0000");

● list[1] = new Student ("Ms. Scarlet", "111-11-1111", 1998, 3.2);

● list[2] = new Faculty ("Prof. Plum", "222-22-2222", 1981);

● for (int i = 0; i < list.length; i++)

● System.out.println(list[i].toString())

What type is list[i]? It can be a reference to any object that is derived from
Person. The appropriate toString will be called.

[Col. Mustard] 000-00-0000
[Ms. Scarlet] 111-11-1111 1998 3.2
[Prof. Plum] 222-22-2222 1981

Output:

CMSC 131 - Lecture Set #15 14

Calling an overridden function

Possible but use sparingly.
Overriding hides methods of the base class (can still access them using
super.methodName() in subclass, but not in “outside world”)

● public class Person {

● public String toString(){ /*one def here*/}

● …

● }

● public class Administrator extends Person {

● public String toString(){/*different def here*/}

● public String regPrint(){

● return super.toString(); /* will use Person’s def of toString*/

● /*return toString(); will use Administrator’s def of toString*/

● }

● }

Often better to pick a different name rather than overload if you want both.

CMSC 131 - Lecture Set #15 15

Derived class: Student
package university;
public class Student extends Person {
 private int admitYear;
 private double gpa;

 public Student() {
 super();
 admitYear = -1;
 gpa = 0.0;
 }
 public Student(String n, String id, int yr, double g) {
 super(n, id);
 admitYear = yr;
 gpa = g;
 }
 public Student(Student s) {
 super(s);
 admitYear = s.admitYear;
 gpa = s.gpa;
 }
 // …other methods in part 2
}

Additional instance variables

Default constructor

Standard constructor

Copy constructor

This calls the default constructor
for base class (superclass),
Person, to set name and idNum.

Calls Person
constructor.

Calls Person copy
constructor.

Tells Java that Student
is derived from Person

CMSC 131 - Lecture Set #15 16

Understanding the Student

extends specifies that Student is subclass of Person:
public class Student extends Person

super()
When creating a new Student object, we need to initialize its base-class
instance variables (from Person)

This is done by calling super(…). E.g.

super(name, id) invokes constructor Person(name, id)

super(…) must be the first statement of your constructor
If you do not call super(), Java will automatically invoke the base class’s
default constructor

If the base class’s default constructor is undefined? Error

You must use super(…), not Person(…)

CMSC 131 - Lecture Set #15 17

super vs. this
super: refers to the base class

Can invoke any base class constructor using super(…)

Can access data and methods in base class (Person) via super

 E.g., toString(), equals() invoke the corresponding methods from
Person base class using super.toString() and super.equals()

this: refers to current class / object
Can refer to own data and methods using this (usually unnecessary)

Can invoke any of its own constructors using this(…). Like super:

Can only be done within a constructor

Must be the first statement of the constructor

Example

public Faculty(Faculty f) {

 this(f.getName(), f.getIdNum(), f.hireYear);

}

CMSC 131 - Lecture Set #15 18

Inheritance and private
Student inherits all private data (name and idNum) from Person
However, private members of base class cannot be accessed directly

● public class Student extends Person {
● …
● public void someMethod() {
● name = “Mr. Foobar”; // Illegal!
● }

● public void someMethod2() {
● setName(“Mr. Foobar”); // OK
● }

Why?
Although Student inherits from Person …

… they are different classes

Public, Protected,
Package(default) and Private

Select which level of visibility

CMSC 131 - Lecture Set #15 19

Access Levels

Access Level/Group Class Package SubClass World

public Y Y Y Y

protected(a
void)

Y Y Y N

package (default) Y Y N N

private Y N N N

CMSC 131 - Lecture Set #15 20

Shadowing

Can we override instance variables just like methods?
Yes, but be careful!

Overriding instance variable is called shadowing

Shadowing hides instance variables of base class (can still access them
using super.varName in subclass, but not in “outside world”)

● public class Person {

● String name;

● …

● }

● public class Administrator extends Person {

● String name;// name refers to Administrator’s name

● }

Confusing! Better to pick a new variable name

CMSC 131 - Lecture Set #15 21

Example of
Overloading/Overriding
public class Base {
 public void m (int x) { … }
}

public class Derived extends Base {
 public void m (int x) { … }
 public int m (int x) { … }
 public void m (double d) { … }
}

// The following appears in the same package as above

 Base b = new Base();
 Base d = new Derived();
 Derived e = new Derived();
 b.m (5);
 d.m (6);
 d.m (7.0);

 e.m (8.0);

Error! duplicate method declaration

Overriding: with increased visibility

Overloading

calls
Base:m(int)

calls Derived:m(int)

Error! Since d is declared Base, the compiler looks for Base:m(double)
Doesn’t exist! So this does not make it past the compiler, even
though Derived:m(double) is defined!

calls Derived:m(double)

CMSC 131 - Lecture Set #15 22

Object
Recall: inheritance induces “is-a” hierarchy on classes

Undergrad “is-a” Student

Student “is-a” Person

etc.

Person “is-a” ….?
Person “is-a”(n) Object
Student “is-a”(n) Object

Person

Student Faculty Administrator

Undergrad GradStudent Instructor Professor … …

Person

Student Faculty

Object

CMSC 131 - Lecture Set #15 23

More on Object
Special class at top of class inheritance hierarchy
Defined in java.lang (so available in every program)
Every class is derived (either directly or indirectly) from Object

If a class is not derived from anything, it is automatically derived from Object

e.g.

● public class Foo { …}

● is equivalent to

● public class Foo extends Object {…}

Structure of Object
No instance variables

A number of methods, including:

● toString()

● equals (Object o)

Note: parameter to equals has type Object, so any object can be an argument

These methods can (and usually should) be overridden

CMSC 131 - Lecture Set #15 24

Class vs. Type Information

In Java
Every object is in one class (the one it was created from using new)

Objects may have many types (all those that class is based on)

● Interfaces
● Superclasses

E.g. consider
Student bob = new Student();

Person p = bob;

Class of object pointed to by bob and p is Student

Type of object can be Student, Person, Object, etc.

CMSC 131 - Lecture Set #15 25

Accessing Class and Type
Information
Objects can access their class info at run-time
getClass()

Method defined in Object

Returns representation of object’s class

E.g.

– Person bob = new Person(…);

– Person ted = new Student(…);

– if (bob.getClass() == ted.getClass())

– // false (ted is really a Student)

instanceof
Java boolean operator (not a method)

Returns true if given object “is-a”(n) object of given (class) type

E.g.

– Student carol = new Student (…);

– if (carol instanceof Person) // true, because carol “is-a” Person

CMSC 131 - Lecture Set #15 26

Object Casting
Recall casting in primitive types

Casting: conversion of elements from one type to another

Widening Conversion

● Every element in source type is a element in destination type

● Can be done automatically

– double x = 3; // 3 (int) widening conversion to double

Narrowing Conversion

● Elements in source type are not necessarily elements in the destination type

● Must use explicit type conversions to perform this casting

– int x = (int)3.0; // 3.0 explicitly cast to int

Similar notions can be found with object types also
Upcasting

● Casting a reference to a superclass (casting up the inheritance tree)

● Always done automatically and is always safe

● Just ignore the parts that were added by the subclass

Downcasting

● Casting a reference to a derived class

● Requires explicit casting operator, which checks type info at run-time

● Can cause runtime error

CMSC 131 - Lecture Set #15 27

Safe Downcasting

Illegal downcasting results in a thrown
ClassCastException at run-time
Q: Can we check for the legality of a cast before trying
it?
A: Yes, using instanceof
Example

Given: ArrayList of university people

Want: Print the GPAs of the students

Solution approach
● Iterate through list
● Print GPAs only of Students

CMSC 131 - Lecture Set #15 28

equals() Reconsidered
Recall definition of equals()

… in Person

● public boolean equals (Person p) {

● if (p == null){

● return false;

● }

● return name.equals(p.getName()) &&

● idNum.equals(p.getIdNum());

● }

… in Student

● public boolean equals(Student s) {

● if (s == null){

● return false;

● }

● return super.equals(s) &&

● admitYear == s.admitYear &&

● gpa == s.gpa;

● }

What does following do?
● public static void main (String[] args) {

● Student bob = new Student ("R. Goode", "234-56-7890", 1998, 3.89);

● Faculty bob2 = new Faculty ("R. Goode", "234-56-7890", 2005);

● System.out.println (bob.equals (bob2));

● }

true is printed!

CMSC 131 - Lecture Set #15 29

A Better equals()
Take Object as parameter
Check for non-null-ness of parameter
Check that class type is correct
Then do other checks
For example in Person:

● public boolean equals (Object o) {

● if (o == null)

● return false;

● else if (o.getClass() != getClass())

● return false;

● else {

● Person p = (Person)o;

● return name.equals(p.getName()) &&

● idNum.equals(p.getIdNum());

● }

● }

Similar improvements can be made to Student, Faculty
Now bob.equals(bob2) returns false

CMSC 131 - Lecture Set #15 30

Recall Interfaces
Interfaces contain lists of method prototypes
Example from Lecture #23:

public interface UMStudent {

public void goToClass();

public void study();

public void add(int a, int b);

public String getName();

}

Classes can be indicated as implementing interfaces
public class CSMajor implements UMStudent {

 …

}

To satisfy Java compiler, CSMajor must provide implementatons of goToClass(), study(), etc.

Interfaces can be used as types, and thus to support polymorphism:
public void psychoAnalyze(UMStudent student) { … }

From last time: interfaces are similar to, but different from, abstract classes
Abstract classes can contain abstract, concrete methods

Classes can implement multiple interfaces, but inherit (directly) from only one class

CMSC 131 - Lecture Set #15 31

Main Uses of Interfaces

API for classes
Polymorphism
“Faking multiple inheritance”
Specifying sets of symbolic constants

CMSC 131 - Lecture Set #15 32

“Multiple Inheritance”?

Intuitively useful to be able to inherit from multiple classes (multiple inheritance)

But Java does not allow this

Person

Student Faculty

StudentAthlete

Athlete

CMSC 131 - Lecture Set #15 33

Why Does Java Disallow
Multiple Inheritance?

Semantic difficulties!
Consider StudentAthlete

Objects would get name field
from Student

Objects would also get name
field from Athlete

Duplicate fields: what to do?

Some languages (e.g. C++) do
allow multiple inheritance

Person

Student

StudentAthlete

Athlete

CMSC 131 - Lecture Set #15 34

Can We Achieve Some of Benefits
of Multiple Inheritance in Java?
Yes, using interfaces + inheritance

Idea: use inheritance for one of inherited classes, interfaces for others

Interfaces ensure that relevant methods are implemented

Example
public class Person { … }

public class Student extends Person { … }

public interface Athlete {

public String getSport ();

public void setSport (String sport);

}

public class StudentAthlete extends Student implements Athlete {

…

}

Objects of type StudentAthlete “are” Students
They also can be wherever objects matching Athlete are required

CMSC 131 - Lecture Set #15 35

Interfaces and Constants
Interfaces can also contain public final static variables
Sometimes interfaces are used to provide consistent definitions for constants throughout an application
Example

public interface Months {

public final static intJANUARY = 1;

public final static intFEBRUARY = 2;

public final static intMARCH = 3;

…

public final static int DECEMBER = 12;

}

public class MonthDemo implements Months {

public static void main(String[] args) {

 System.out.println("March is month number " + MARCH);

}

}

Because MonthDemo implements Months, it has access to the constants

CMSC 131 - Lecture Set #15 36

Interface Hierarchies
Inheritance may also be used to build new interfaces from previous ones
A subinterface inherits all method / constant declarations from its base interface
A subinterface may also introduce new methods / constants
E.g. public interface Level1<T> {

● boolean x();

● T y();

● void z();

● }

We can define a new, interface using inheritance

public interface Level2<T> extends Level1<T> {

boolean a();

T b();

}

	Slide 1
	Inheritance
	Can We Avoid Code Copying and therefore redundancy?
	Inheritance
	Inheritance vs. Composition
	Implements vs. Extends
When Defining a Class
	Inheritance More Generally
	Example: People at University
	University Person Example
	Method Overriding
	Overriding vs. Overloading
	Early vs. Late Binding
	Polymorphism
	Calling an overridden function
	Derived class: Student
	Understanding the Student
	super vs. this
	Inheritance and private
	Public, Protected, Package(default) and Private
	Shadowing
	Example of Overloading/Overriding
	Object
	More on Object
	Class vs. Type Information
	Accessing Class and Type Information
	Object Casting
	Safe Downcasting
	equals() Reconsidered
	A Better equals()
	Recall Interfaces
	Main Uses of Interfaces
	“Multiple Inheritance”?
	Why Does Java Disallow Multiple Inheritance?
	Slide 34
	Interfaces and Constants
	Interface Hierarchies

