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Three Assumptions
G = 〈N, {Si , ui}i∈N〉

I A game is a partial description of a set (or sequence) of
interdependent Bayesian decision problems. The qualitative
constraints will not normally be enough to determine what the
agents believe about each other, or to determine what solutions are
prescribed to the decision problems.

I There is no concept of rationality for decision making in a situation
where the outcomes depend on the actions of more than one agent.
The utilities of the other agents are only relevant to an agent as
information that, together with beliefs about the rationality of those
agents, help predict their actions.

I There are no special rules of rationality telling one what to do in the
absence of degrees of belief except: decide what you believe, and
then maximize expected utility.
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Models of Games

Suppose that G is a game.

I Outcomes of the game: S = Πi∈NSi

I The players’ beliefs, or conjectures: {Pi}i∈N , Pi ∈ ∆(S−i )
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Models of Games, continued
A model of a game MG = 〈W , {Pi}i∈N , s〉 is a completion of the partial
specification of the Bayesian decision problems and a representation of a
particular play of the game.

I W os a set of possible worlds

I s is a function s : W → Πi∈NSi

I For si ∈ Si , [s] = {w | s(w) = s}, if X ⊆ S , [X ] =
⋃

s∈X [s],
[si ] = {w | si (w) = si}.

I For each i ∈ N, Pi ∈ ∆(W ). Two assumptions:

• [s] is measurable for all strategy profiles s ∈ S
• Pi ([si ]) > 0 for all si ∈ Si

I Pi ,w (E ) = Pi (E | [σi (w)]) = Pi (E∩[σi (w))
Pi ([σi (w)])

Pi([s]) vs. Pi ,w([s])
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For any P ∈ ∆(S−i ) and si ∈ Si , EUi ,P(si ) =
∑

s−i∈S−i
P(s−i )ui (si , s−i )

For any w ∈W and si ∈ Si , EUi ,w (si ) =
∑

s−i∈S−i
Pi ,w ([s−i ])ui (s1, s−i )

Rati = {w | EUi ,w (si (w)) ≥ EUi ,w (si ) for all si ∈ Si}

Each P ∈ ∆(W ) is associated with PS ∈ ∆(S) as follows: for all s ∈ S ,
PS(s) = P([s])

A mixed strategy σ ∈ Πi∈N∆(Si ), Pσ ∈ ∆(S), Pσ(s) = σ1(s1) · · ·σn(sn)
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Theorem (Aumann). σ is a Nash equilibrium of G iff there exists a
model MG = 〈W , {Pi}i∈N , s〉 such that for all i ∈ N, Rati = W , for all
i , j ∈ N, Pi = Pj and for all i ∈ N, PS

i = Pσ.

Theorem (Aumann). σ is a correlated equilibrium of G iff there exists a
model MG = 〈W , {Pi}i∈N , s〉 such that for all i ∈ N, Rati = W and for
all i ∈ N, PS

i = σ.
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A best reply set (BRS) is a sequence (B1,B2, . . . ,Bn) ⊆ S = Πi∈NSi

such that for all i ∈ N, and all si ∈ Bi , there exists µ−i ∈ ∆(B−i ) such
that si is a best response to µ−i : I.e.,

bi = arg max
si∈Si

EUi ,µ−i
(si )

.
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2

1

b1 b2 b3 b4

a1 0, 7 2, 5 7, 0 0, 1

a2 5, 2 3, 3 5, 2 0, 1

a3 7, 0 2, 5 0, 7 0, 1

a4 0, 0 0, -2 0, 0 10, -1

I (a2, b2) is the unique Nash equilibria, hence ({a2}, {b2}) is a BRS

I ({a1, a3}, {b1, b3}) is a BRS

I ({a1, a2, a3}, {b1, b2, b3}) is a full BRS
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Theorem (Bernheim; Pearce; Brandenburger and Dekel; . . . ).
(B1,B2, . . . ,Bn) is a BRS for G iff there exists a model
MG = 〈W , {Pi}i∈N , s〉 such that for all i ∈ N, Rati = W and
[B1 × · · · × Bn] = W .
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Epistemic and Causal Possibilities

“In deliberation, I reason both about how the world might have been
different if I or others did different things than we are going to do, and
also about how my beliefs, or others’ beliefs, might change if I or they
learned things that we expect not to learn.” (pg. 134)

R. Stalnaker. Knowledge, Belief and Counterfactual Reasoning in Games. Economics
and Philosophy, 12, pgs. 133 - 163, 1996.

A game model MG = 〈W , {Pi}i∈N , s〉 can represent the first type of
possibility but not the second.
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In a game model MG different states represent different beliefs only
when the agent is doing something different.

To represent different beliefs, we need a set of models {MG
1 ,MG

2 , . . .}.

Alternatively, MG = 〈W , {Ri ,Pi}i∈N , s〉. Where W and s are as before.
w Ri v means v is compatible with what i believes in w .

I Then, the set Ri (w) = {v | w Ri v} is the set of all worlds
compatible with what i believes in w

I Assume that Ri is serial, transitive and Euclidean. So, for any w , v if
the agent has different beliefs in w and v , then Ri (w) ∩ Ri (v) = ∅.

I Assume that for all w , v , if w Ri v , then si (v) = si (w)

I Pi ,w (E ) = Pi (E | Ri (w))

I Rati is defined as before
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Enough Counterfactual Possibilities

If a player had chosen a different strategy from the one he in fact chose,
the other players would still have chosen the same strategies, and would
have had the same beliefs, that they in fact had.

For any world w and strategy si ∈ Si for player i , there is a world f (w , s)
such that

1. for all j 6= i , if w Rj v , then f (w , si ) Rj v

2. if w Ri v , then f (w , si ) Ri f (v , si )

3. si (f (w , si )) = si

4. Pi (f (w , s)) = Pi (w)

f (w , si ) represents the counterfactual possible world that, in w , is the
world that would have been realized if player i , believing exactly what he
believes in w about the other players, had chosen strategy si .
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“Even if I am resolved to act rationally, I may consider in deliberation
what the consequences would be of acting in ways that are not. And
even if I am certain that you will act rationally, I may consider how I
would revise my beliefs if I learn that I was wrong about this.”
add (pg. 14, Stalnaker)
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As is standard, we suppose that the agent revises her beliefs by
conditionalization, but nothing in the models describes how the players
revise her beliefs if they learn something that had a prior probability 0.

“...even in a static situation, one might ask how an agent’s beliefs are
disposed to change were he to learn that he was mistaken about
something he believe with probability one, and the answer to this
question may be relevant to his decisions.” (pg. 143, Stalnaker)
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Let P ∈ ∆(X ) be a probability measure, the support of P is
supp(P) = {x ∈ X | P(x) > 0}.

A probability measure P ∈ ∆(X ) is said to be a full support probability
measure on X provided supp(P) = X .
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Bob

A
nn

U L R

U 3,3 1,1 U

D 2,2 2,2 U

Is D rationalizable?

There is no full support probability such that R is a best response
Should Ann assign probability 0 to R or probability > 0 to R?
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Strategic Reasoning and Admissibility

“The argument for deletion of a weakly dominated strategy for player i is
that he contemplates the possibility that every strategy combination of
his rivals occurs with positive probability. However, this hypothesis
clashes with the logic of iterated deletion, which assumes, precisely, that
eliminated strategies are not expected to occur.”

Mas-Colell, Whinston and Green. Introduction to Microeconomics. 1995.
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Weak Dominance

A

B
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Privacy of tie-breaking: If a strategy a is optimal for player j , then
player i cannot know that j will not choose a.
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A Puzzle

R. Cubitt and R. Sugden. Rationally Justifiable Play and the Theory of Non-cooperative
games. Economic Journal, 104, pgs. 798 - 803, 1994.

R. Cubitt and R. Sugden. Common reasoning in games: A Lewisian analysis of common
knowledge of rationality. Manuscript, 2011.
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A Puzzle
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A Puzzle

U in2 out2 U in2 out2

in1 1, 1, 1 1, 1, 1 in1 1, 1, 1 1, 0, 1

out1 1, 1, 1 0, 1, 1 out1 1, 1, 0 0, 0, 0

in3 out3

There is no Bayesian model of the above game satisfying
privacy of tie-breaking.

If 2 considers out3 possible, then it is common knowledge
that out2 is not possible

If 3 considers out1 possible, then it is common knowledge
that out3 is not possible
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4. If 1 does not consider out2 possible, then 2 & 3 must
consider in1 & out1 possible

If 2 does not consider out3 possible, then 1 & 3 must
consider in2 & out2 possible

If 3 does not consider out1 possible, then 1 & 2 must
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U in2 out2 U in2 out2

in1 1, 1, 1 1, 1, 1 in1 1, 1, 1 1, 0, 1

out1 1, 1, 1 0, 1, 1 out1 1, 1, 0 0, 0, 0

in3 out3

I If i considers outi+1 possible, then it is common
knowledge that outi is not possible

I If i does not consider outi+1 possible, then i + 1 & i + 2
must consider ini & outi possible

1 does consider out2 possible =⇒ 3 does not consider
out1 possible =⇒ 2 considers out3 possible =⇒ 1 does
not consider out2 possible
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I If i considers outi+1 possible, then it is common
knowledge that outi is not possible

I If i does not consider outi+1 possible, then i + 1 & i + 2
must consider ini & outi possible

I 1 does consider out2 possible =⇒ 3 does not consider
out1 possible =⇒ 2 considers out3 possible =⇒ 1 does
not consider out2 possible
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Let G = 〈N, {Si , ui}i∈N〉 be a game.

A strategy is justifiable if and only if it is optimal with respect to some
coherent set of beliefs. A set of beliefs is coherent if and only if it is
internally consistent and satisfies a principle of caution.

Given Pi ∈ ∆(S−i ) and sk ∈ Sk the marginal of Pi on sk is

Pi [sk ] =
∑

s−i∈S−i ,(s−i )k=sk

Pi (s−i )
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A justifiable theory is a set of pairs for each i ∈ N, (Ji ,Ci ) where

1. For all i ∈ N, Ji ⊆ Si and Ci ⊆ ∆(S−i )

2. For all i ∈ N, Ci 6= ∅

3. For all i ∈ N, si ∈ Si , if there exists some Pi ∈ Ci such that
si = arg maxx∈Si EUi ,Pi

(x), then si ∈ Ji

4. For all i ∈ N, si ∈ Si , if si ∈ Ji , then there exists some Pi ∈ Ci such
that si = arg maxx∈Si EUi ,Pi

(x)

5. For all i , k ∈ N, Pi ∈ ∆(S−i ), if sk 6∈ Jk and Pi [sk ] > 0, then
Pi 6∈ Ci

6. For all i , k ∈ N, Pi ∈ ∆(S−i ), if sk ∈ Jk and Pi [sk ] = 0, then
Pi 6∈ Ci
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There is no justifiable theory for the game G .
Let h(1) = 2, h(2) = 3, h(3) = 1.

1. If Ji = {ini , outi}, then Jh(i) = {inh(i)}
2. If Ji = {ini}, then Jh(i) = {inh(i), outh(i)}

Three cases:

1. J1 = {in1} =⇒ J2 = {in2, out2} =⇒ J3 = {in3} =⇒
J1 = {in1, out1}, contradiction.

2. J1 = {out1}. Then, there is P1 ∈ C1 such that P1[in2] = 1. Then,
since in1 = arg maxx∈S1 EU1,P1(x), by 3., in1 ∈ J1, contradiction.

3. J1 = {in1, out1} =⇒ J2 = {in2} =⇒ J3 = {in3, out3} =⇒
J1 = {in1}, contradiction.
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Bob
A
nn

U L R

U 1,1 0,0 U

D 0,0 0,0 U

Game 1

Bob

A
nn

U L R

U 1,1 1,0 U

D 1,0 0,1 U

Game 2

Game 1: U weakly dominates D and L weakly dominates R.

Game 2: U strictly dominates D, and after removing D, L strictly
dominates R.

Theorem. The projection of any event where the players are rational
and there is common belief of rationality are strategies that survive
iterative removal of strictly dominated strategies (and, conversely...).
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U L R

U 1,1 0,0 U

D 0,0 0,0 U

Game 1

Bob

A
nn

U L R

U 1,1 1,0 U

D 1,0 0,1 U

Game 2

Game 1: U weakly dominates D and L weakly dominates R.

Game 2: But, now what is the reason for not playing D?

Theorem (Samuelson). There is no model of Game 2 satisfying common
knowledge of rationality (where rationality incorporates weak
dominance). adfa sfas df adsf asd fa
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Common Knowledge of Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

T , L T ,R T , {L,R}

B, L B,R B, {L,R}

{T ,B}, L {T ,B},R {T ,B}, {L,R}

There is no model of this game with common knowledge of admissibility.
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The ”full” model of the game: B is not admissible given Ann’s
information
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Common Knowledge of Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

T , L T ,R T , {L,R}

B, L B,R B, {L,R}

{T ,B}, L {T ,B},R {T ,B}, {L,R}

What is wrong with this model? asdf ad fa sdf a fsd asdf adsf adfs
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Common Knowledge of Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

T , L T ,R T , {L,R}

B, L B,R B, {L,R}

{T ,B}, L {T ,B},R {T ,B}, {L,R}

Privacy of Tie-Breaking/No Extraneous Beliefs: If a strategy is
rational for an opponent, then it cannot be “ruled out”.
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T , L T ,R T , {L,R}
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Moving to choice sets. asdf ad fa sdf a fsd asdf adsf adfs
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Common Knowledge of Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

T , L T ,R T , {L,R}

B, L B,R B, {L,R}

{T ,B}, L {T ,B},R {T ,B}, {L,R}

Ann thinks: Bob has a reason to play L OR Bob has a reason to play R
OR Bob has not yet settled on a choice
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Common Knowledge of Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

T , L T ,R T , {L,R}

B, L B,R B, {L,R}

{T ,B}, L {T ,B},R {T ,B}, {L,R}

Still there is no model with common knowledge that players have
admissibility-based reasonsasdf ad fa sdf a fsd asdf adsf adfs
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Common Knowledge of Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

T , L T ,R T , {L,R}

B, L B,R B, {L,R}

{T ,B}, L {T ,B},R {T ,B}, {L,R}

there is a reason to play T provided Ann considers it possible that Bob
might play R (actually three cases to consider here)
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Common Knowledge of Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

T , L T ,R T , {L,R}

B, L B,R B, {L,R}

{T ,B}, L {T ,B},R {T ,B}, {L,R}

But there is a reason to play R provided it is possible that Ann has a
reason to play B
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Common Knowledge of Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

T , L T ,R T , {L,R}

B, L B,R B, {L,R}

{T ,B}, L {T ,B},R {T ,B}, {L,R}

But, there is no reason to play B if there is a reason for Bob to play R.
ada dad asd a ds asd ad d
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Common Knowledge of Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

T , L T ,R T , {L,R}

B, L B,R B, {L,R}

{T ,B}, L {T ,B},R {T ,B}, {L,R}

R can be ruled out unless there is a possibility that B will be played.
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Common Knowledge of Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

T , L T ,R T , {L,R}

B, L B,R B, {L,R}

{T ,B}, L {T ,B},R {T ,B}, {L,R}

there is no reason to play B if R is a possible play for Bob.
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Common Knowledge of Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

T , L T ,R T , {L,R}

B, L B,R B, {L,R}

{T ,B}, L {T ,B},R {T ,B}, {L,R}

We can check all the possibilities and see we cannot find a model...asdf
ad fa sdf a fsd asdf adsf adfs
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Bob
A
nn

U In Out

In 3,3 1,1 U

Out 2,2 2,2 U

A B 3, 3

2, 2 1, 1

In

Out Out

In

(D,R) is rationalizable: Bob assigns probability 1 to Ann choosing
Out and Bob assigns probability 1 to Ann choosing Out. Both are
rational given these beliefs.

What Ann believes Bob will do depends on an event that both Ann
and Bob assign probability 0 to.
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Bob
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nn

U In Out

In 3,3 1,1 U

Out 2,2 2,2 U

A B 3, 3

2, 2 1, 1

In

Out Out

In

I (Out,Out) is rationalizable: Bob assigns probability 1 to Ann
choosing Out and Bob assigns probability 1 to Ann choosing Out.
Both are rational given these beliefs.

I What Ann believes Bob will do depends on an event that both Ann
and Bob assign probability 0 to.
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CPS (Popper Space)

A conditional probability space (CPS) over (W ,F) is a tuple
(W ,F ,F ′, µ) such that F is an algebra over W , F ′ is a set of subsets of
W (not necessarily an algebra) that does not contain ∅ and
µ : F × F ′ → [0, 1] satisfying the following conditions:

1. µ(U | U) = 1 if U ∈ F ′

2. µ(E1 ∪ E1 | U) = µ(E1 | U) + µ(E2 | U) if E1 ∩ E2 = ∅, U ∈ F ′ and
E1,E2 ∈ F

3. µ(E | U) = µ(E | X )× µ(X | U) if E ⊆ X ⊆ U, U,X ∈ F ′ and
E ∈ F .
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LPS (Lexicographic Probability Space)

A lexicographic probability space (LPS) (of length α) is a tuple
(W ,F , ~µ) where W is a set of possible worlds, F is an algebra over W
and ~µ is a sequence of (finitely/countable additive) probability measures
on (W ,F) indexed by ordinals < α.
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Suppose that W = {w1,w2}, µ0(w1) = µ0(w2) = 1/2 and µ1(w1) = 1.
The LPS ~µ = (µ0, µ1) can be thought of as describing a situation where
w1 is “very slightly” more likely that w2.

Suppose that X1 is a bet that pays off 1 if w1 and 0 in state w2 and X2

is a bet that pays off 1 if w2 and 0 in state w1.

Then, according to ~µ, X1 should be “slightly preferred” to a X2, but for
all real numbers r > 1, the bet rX2 is preferred to X1.
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NPS (non-standard probability measures)

R∗ is a non-Archimedean field that includes the real numbers as a
subfield but also has infinitesimals.

For all b ∈ R∗ such that −r < b < r for some r ∈ R, there is a unique
closest real number a such that |a− b| is an infinitesimal. Let st(b)
denote the closest standard real to b.

A nonstandard probability space (NPS) is a tuple (W ,F , µ) where W
is a set of possible worlds, F is an algebra over W and µ assigns to
elements of F , nonnegative elements of R∗ such that µ(W ) = 1,
µ(E ∪ F ) = µ(E ) + µ(F ) if E and F are disjoint.
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J. Halpern. Lexicographic probability, conditional probability, and nonstandard proba-
bility. Games and Economic Behavior, 68:1, pgs. 155 - 179, 2010.
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Both Including and Excluding a Strategy
Returning to the problem of weakly dominated strategies and
rationalizability, one solution is to assume that players consider some
strategies infinitely more likely than other strategies.

Bob

A
nn

U 1 [1]

U L R

U 3,3 1,1 U

D 2,2 2,2 U

L. Blume, A. Brandenburger, E. Dekel. Lexicographic probabilities and choice under
uncertainty. Econometrica, 59(1), pgs. 61 - 79, 1991.
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Self-Admissible Sets, I

Let G = ({a, b}, {Sa, ua}, {Sb, ub}) be a two player game.

If X ⊆ Sa and Y ⊆ Sb, s ∈ Sa is admissible with respect to X × Y for a
if and only if there is a probability measure P ∈ ∆(Sb) such that

sa = arg max
x∈X

EUa,P(x)

and supp(P) = Y .

Fix sa ∈ Sa, a strategy ra ∈ Qa supports sa if and only if there is a
σ ∈ ∆(Sa) such that Ua(σ, sb) = Ua(sa, sb) and ra ∈ supp(σ).
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Self-Admissible Sets, II

A self-admissible set is a pair (Qa,Qb) such that

1. Each sa ∈ Sa is admissible with respect to Sa × Sb

2. Each sa ∈ Qa is admissible with respect to Sa × Qb

3. For all sa ∈ Qa, if ra supports sa, then ra ∈ Qa
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SAS Example

Bob

A
nn

U L C R

U 1,1 1,1 0,0 U

M 1,1 0,0 1,0 U

D 0,0 0,1 0,0 U

Five SASs: {(U, L)}, {(U,C )}, {U} × {L,C}, {(M, L)}, {U,M} × {L},
but {(U,M)} × {L,C} is not an SAS.
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SAS Example

A. Brandenburger and A. Friedenberg. Self-Admissible Sets. Journal of Economic
Theory, 145 (2010), pgs. 785 - 811.
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Each type is associated with an LPS : ti 7→ (µ0, µ1, . . . , µn−1) (each µi is
a probability measure on S−i with disjoint supports)

An LPS (µ0, . . . , µn) on X has full support if ∪ni=1supp(µi ) = X .

(si , ti ) is rational provided (i) si lexicographically maximizes i ’s expected
payoff under the LPS associated with ti , and (ii) the LPS associated
with ti has full support.
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Fix an LPS ~µ = (µ0, . . . , µn)

I E is certain: µ0(E ) = 1

I E is absolutely certain: µi (E ) = 1 for all i = 1, . . . , n

I E is assumed: there exists k such that µi (E ) = 1 for all i ≤ k and
µi (E ) = 0 for all k < i < n.

The key notion is rationality and common assumption of rationality
(RCAR).
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Digression on Belief Change, I
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Digression on Belief Change, I

Consider the following beliefs of a rational agent:

p1 All Europeans swans are white.

p2 The bird caught in the trap is a swan.

p3 The bird caught in the trap comes from Sweden.

p4 Sweden is part of Europe.

Thus, the agent believes:

q The bird caught in the trap is white.

Now suppose the rational agent—for example, You—learn that the bird
caught in the trap is black (¬q).
Question: How should the agent incorporate ¬q into his belief state to
obtain a consistent belief state?
There are several logically consistent ways to incorporate ¬q!
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Digression on Belief Change, II

What extralogical factors serve to determine what beliefs to give up and
what beliefs to retain?
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Digression on Belief Change, III

Belief revision is a matter of choice, and the choices are to be made in
such a way that:

1. The resulting theory squares with the experience;

2. It is simple; and

3. The choices disturb the original theory as little as possible.

Research has relied on the following related guiding ideas:

1. When accepting a new piece of information, an agent should aim at
a minimal change of his old beliefs.

2. If there are different ways to effect a belief change, the agent should
give up those beliefs which are least entrenched.
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Digression: Belief Revision

A.P. Pedersen and H. Arló-Costa. “Belief Revision.”. In Continuum Companion to
Philosophical Logic. Continuum Press, 2011.

Hans Rott. Change, Choice and Inference: A Study of Belief Revision and Nonmonotonic
Reasoning. Oxford University Press, 2001.
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AGM

Let B the set of states representing the prior belief state, and B ′ the set
of states representing the posterior belief state. If E is any subset of B ′,
then B(E ) is the set that represents the beliefs state induced by E :

1. For any E , B(E ) ⊆ E

2. If E 6= ∅, then B(E ) 6= ∅
3. If E ∩ B 6= ∅, then B(E ) = B ∩ E

4. If B(E ) ∩ E 6= ∅, then B(E ∩ F ) = B(E ) ∩ F
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. . .
w

I The agent’s (hard) information (i.e., the states consistent with what
the agent knows)

I The agent’s beliefs (soft information—-the states consistent with
what the agent believes)
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. . .
w

I The agent’s beliefs (soft information—-the states consistent with
what the agent believes)

I The agent’s “contingency plan”: when the stronger beliefs fail, go
with the weaker ones.
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〈W , {�i ,Pi}i∈N , s〉

�i is a reflexive, transitive and locally connected ordering on W .

w Ri v iff v ∈ max�i (W ).
w ≈i v iff w �i v or v �i w .

Bi ,x(E ) = {w ∈ E | for all y ∈ E ∩ {z | z ≈i x}, w �i y}

y �i x provided y ∈ B({x , y})
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Belief Revision via Plausibility

I W = {w1,w2,w3}
w1 � w2 and w2 � w1 (w1 and w2

are equi-plausbile)

w1 ≺ w3 (w1 � w3 and w3 6� w1)

w2 ≺ w3 (w2 � w3 and w3 6� w2)

{w1,w2} ⊆ Max�([wi ])

w3

w2w1

A

B

D

E

ϕ
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Belief Revision via Plausibility

ψ

A

B

C

D

E

ϕ

Conditional Belief: Bϕψ

Min�([[ϕ]]M) ⊆ [[ψ]]M

Conservative Upgrade: Information from a trusted source
(↑ϕ): A ≺i C ≺i D ≺i B ∪ E

Conservative Upgrade: Information from a trusted source
(↑ϕ): A ≺i C ≺i D ≺i B ∪ E
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E 1
i = {x ∈W | for some y such that y ≈i x , not x �i y}

= {x ∈W | not x Ri x}.

E k+1
i = {x ∈ E k

i | for some y ∈ E k
i such that y ≈i x , not x �i y}

E 1
i is the proposition that player i has at least some false belief

“Even though each of two propositions has maximum degree of belief,
one may be believed more robustly than the other in the sense that the
agent is more disposed to continue believing it in response to new
information.” (pg. 147, Stalnaker)
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Pi ,x(E | F ) =
Pi (E ∩ Bi ,x(F ))

Pi (Bi ,x(F ))

If Pi ,x(F ) > 0, then this coincides with conditional probability. In
particular, Pi ,x(E ) = Pi ,x(E | W ).

Definition. An action is perfectly rational if it not only maximizes
expected utility, but also satisfies a tie-breaking procedure that requires
that certain conditional expected utilities be maximized as well. The idea
is that in cases where two ore more actions maximize expected utility, the
agent should consider, in choosing between them, how he should act if
he learned he was in error about something. (Stalnaker, pg. 148)
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EUi ,x(si | E ) =
∑

s−i∈S−i

Pi ,x([s−i ] | E )× ui ((si , s−i )

Let EUi ,x(si ) = EUi ,x(si | W )

Rat0i ,x = Rati ,x = {si ∈ Si | EUi ,x(si ) ≥ EUi ,x(s ′i ) for all s ′i ∈ Si}
Ratk+1

i ,x = Rati ,x = {si ∈ Ratki ,x | EUi ,x(si | E k+1
i ) ≥

EUi ,x(s ′i | E k+1
i ) for all s ′i ∈ Ratki ,x}
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Bob
A
nn

U t l

T 1,0 1,0 U

L 1,1 0,0 U

A B 0, 0

1, 0 1, 1

L

T t

l

I Both strategies of both players is rationalizable.

I Only T is perfectly rational for Ann and t is perfectly rational for
Bob.
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Bob
A
nn

U t l

T 2,2 2,2 U

LT 1,1 3,3 U

LL 1,1 0,0 U

A B B 0, 0

2, 2 1, 1 3, 3

L

T t

l

T

L

I Suppose that Bob believes that Ann will choose T with probability
1; what should he do? This depends on what he thinks Ann would
on the hypothesis that his believe about her is mistaken.

I Suppose that if Bob were surprised by her, then he concludes she is
irrational, selecting L on her second move. Bob’s choice of t is
perfectly rational.

Eric Pacuit 51



Bob
A
nn

U t l

T 2,2 2,2 U

LT 1,1 3,3 U

LL 1,1 0,0 U

A B B 0, 0

2, 2 1, 1 3, 3

L

T t

l

T

L

I Suppose Ann is sure that Bob will choose t, which is the only
perfectly rational choice for Bob. Then, Ann’s only rational choice is
T .

I So, it might be that Ann and Bob both know each other’s beliefs
about each other, and are both perfectly rational, but they still fail
to coordinate on the optimal outcome for both.
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A B B 0, 0

2, 2 1, 1 3, 3

L

T t

l

T

L

I Perhaps if Bob believed that Ann would choose L are her second
move then he wouldn’t believe she was fully rational, but it is not
suggested that he believes this.

I Divide Ann’s strategy T into two TT : T , and I would choose T
again on the second move if I were faced with that choice” and TL:
“T , but I would choose L on the second move...”

I Of these two only TT is rational

I But if Bob learned he was wrong, he would conclude she chooses LL.
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“To think there is something incoherent about this combination of beliefs
and belief revision policy is to confuse epistemic with causal
counterfactuals—it would be like thinking that because I believe that if
Shakespeare hadn’t written Hamlet, it would have never been written by
anyone, I must therefore be disposed to conclude that Hamlet was never
written, were I to learn that Shakespeare was in fact not its author”
area (pg. 152, Stalnaker)
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