Epistemic Game Theory Lecture 9

Eric Pacuit

University of Maryland, College Park
pacuit.org
epacuit@umd.edu
April 10, 2014
"Analysis of strategic economic situations requires us, implicitly or explicitly, to maintain as plausible certain psychological hypotheses. They hypothesis that real economic agents universally recognize the salience of Nash equilibria may well be less accurate than, for example, the hypothesis that agents attempt to "out-smart" or "second-guess" each other, believing that their opponents do likewise." (pg. 1010)
B. D. Bernheim. Rationalizable Strategic Behavior. Econometrica, 52:4, pgs. 1007 1028, 1984.
"The rules of a game and its numerical data are seldom sufficient for logical deduction alone to single out a unique choice of strategy for each player. To do so one requires either richer information (such as institutional detail or perhaps historical precedent for a certain type of behavior) or bolder assumptions about how players choose strategies. Putting further restrictions on strategic choice is a complex and treacherous task. But one's intuition frequently points to patterns of behavior that cannot be isolated on the grounds of consistency alone."
(pg. 1035)
D. G. Pearce. Rationalizable Strategic Behavior. Econometrica, 52, 4, pgs. 1029 1050, 1984.

What are the consequences of assuming that the players are rational and there is common belief of rationality?
"...a decision-maker has a subjective probability opinion with respect to all of the unknown contingencies affecting his payoffs. In particular in a simultaneous-move two-person game, the player whom we are advising is assumed to have an opinion about the major contingency faced, namely what the opposing player is likely to do. If I think my opponent will choose strategy $i(i=1, \ldots, n)$ with probability p_{i}, I will choose any strategy j maximizing $\sum_{i=1}^{n} p_{i} u_{i j}$, where u is the utility to me of the situation in which my opponent has chosen i and I have chosen j."
(pg. 115, Kadane and Larkey)
"It is true that a subjectivist Bayesian will have an opinion not only on his opponent's behavior, but also on his opponent's belief about his own behavior, his opponent's belief about his belief about his opponent's behavior, etc. (He also has opinions about the phase of the moon, tomorrow's weather and the winner of the next Superbowl).
"It is true that a subjectivist Bayesian will have an opinion not only on his opponent's behavior, but also on his opponent's belief about his own behavior, his opponent's belief about his belief about his opponent's behavior, etc. (He also has opinions about the phase of the moon, tomorrow's weather and the winner of the next Superbowl). However, in a single-play game, all aspects of his opinion except his opinion about his opponent's behavior are irrelevant, and can be ignored in the analysis by integrating them out of the joint opinion." (KL, pg. 239, my emphasis)

Theorem. Assume that there is a common prior and that for all w, for all $i \in N, \Pi_{i}(w) \subseteq\left\{v \mid \mathbf{s}_{i}(v)=\mathbf{s}_{i}(w)\right\}$. If each player is Bayes rational at each state of the world, then the distribution of the action n-tuple \mathbf{s} is a correlated equilibrium.
R. Aumann. Correlated Equilibrium as an Expression of Bayesian Rationality. Econometrica, 55:1, pgs. $1-18,1987$.

Deliberation in Games

- The Harsanyi-Selten tracing procedure
- Brian Skyrms' models of "dynamic deliberation"
- Ken Binmore's analysis using Turing machines to "calculate" the rational choice
- Robin Cubitt and Robert Sugden's "reasoning based expected utility procedure"
- Johan van Benthem et col.'s "virtual rationality announcements"

Different frameworks, common thought: the "rational solutions" of a game are the result of individual deliberation about the "rational" action to choose.

Dominance Reasoning

Dominance Reasoning

Dominance Reasoning

\section*{Bob
 | | L | R |
| :---: | :---: | :---: |
| u | 2,2 | 4,1 |
| D | 1,4 | 3,3 |
 Game 1}

Bob
L $\quad R$

Game 2

Game 1: U strictly dominates D and L strictly dominates R.

Game 1: U strictly dominates D and L strictly dominates R.
Game 2: U strictly dominates D

Game 1: U strictly dominates D and L strictly dominates R.
Game 2: U strictly dominates D, and after removing D, L strictly dominates R.

Game 1: U strictly dominates D and L strictly dominates R.
Game 2: U strictly dominates D, and after removing D, L strictly dominates R.

Theorem. In all models where the players are rational and there is common belief of rationality, the players choose strategies that survive iterative removal of strictly dominated strategies (and, conversely...).

Comparing Dominance Reasoning and MEU

$$
\begin{aligned}
& G=\left\langle N,\left\{S_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right\rangle \\
& X \subseteq S_{-i} \text { (a set of strategy profiles for all players except } i \text {) }
\end{aligned}
$$

Comparing Dominance Reasoning and MEU

$G=\left\langle N,\left\{S_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right\rangle$
$X \subseteq S_{-i}$ (a set of strategy profiles for all players except i)
$s, s^{\prime} \in S_{i}$, s strictly dominates s^{\prime} with respect to X provided

$$
\forall s_{-i} \in X, \quad u_{i}\left(s, s_{-i}\right)>u_{i}\left(s^{\prime}, s_{-i}\right)
$$

Comparing Dominance Reasoning and MEU

$$
\begin{aligned}
& G=\left\langle N,\left\{S_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right\rangle \\
& X \subseteq S_{-i} \text { (a set of strategy profiles for all players except } i \text {) }
\end{aligned}
$$

$s, s^{\prime} \in S_{i}$, s strictly dominates s^{\prime} with respect to X provided

$$
\forall s_{-i} \in X, \quad u_{i}\left(s, s_{-i}\right)>u_{i}\left(s^{\prime}, s_{-i}\right)
$$

$p \in \Delta(X), s$ is a best response to p with respect to X provided

$$
\forall s^{\prime} \in S_{i}, \quad E U(s, p) \geq E U\left(s^{\prime}, p\right)
$$

	L Bob R	
u	5,*	1,*
安M	1,*	5,*
D	2,*	2 ,

D is strictly dominated by $(0.5 U, 0.5 M)$.

M is never a best response: if $p(L)>1 / 2$ then U strictly dominates M, if $p(L)<1 / 2$, then D strictly dominates M.

Strict Dominance and MEU

Proposition. Suppose that $G=\left\langle N,\left\{S_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right\rangle$ is a strategic game and $X \subseteq S_{-i}$. A strategy $s_{i} \in S_{i}$ is strictly dominated (possibly by a mixed strategy) with respect to X iff there is no probability measure $p \in \Delta(X)$ such that s_{i} is a best response to p.

Suppose that $G=\left\langle N,\left\{S_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right\rangle$ is a finite strategic game.

Suppose that $G=\left\langle N,\left\{S_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right\rangle$ is a finite strategic game.
Suppose that $s_{i} \in S_{i}$ is strictly dominated with respect to X :

$$
\exists s_{i}^{\prime} \in S_{i}, \forall s_{-i} \in X, \quad u_{i}\left(s_{i}^{\prime}, s_{-i}\right)>u_{i}\left(s_{i}, s_{-i}\right)
$$

Suppose that $G=\left\langle N,\left\{S_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right\rangle$ is a finite strategic game.
Suppose that $s_{i} \in S_{i}$ is strictly dominated with respect to X :

$$
\exists s_{i}^{\prime} \in S_{i}, \forall s_{-i} \in X, \quad u_{i}\left(s_{i}^{\prime}, s_{-i}\right)>u_{i}\left(s_{i}, s_{-i}\right)
$$

Let $p \in \Delta(X)$ be any probability measure. Then,

$$
\begin{array}{ll}
\forall s_{-i} \in X, & p\left(s_{-i}\right) \cdot u_{i}\left(s_{i}^{\prime}, s_{-i}\right) \geq p\left(s_{-i}\right) \cdot u_{i}\left(s_{i}, s_{-i}\right) \\
\exists s_{-i} \in X, & p\left(s_{-i}\right) \cdot u_{i}\left(s_{i}^{\prime}, s_{-i}\right)>p\left(s_{-i}\right) \cdot u_{i}\left(s_{i}, s_{-i}\right)
\end{array}
$$

Suppose that $G=\left\langle N,\left\{S_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right\rangle$ is a finite strategic game.
Suppose that $s_{i} \in S_{i}$ is strictly dominated with respect to X :

$$
\exists s_{i}^{\prime} \in S_{i}, \forall s_{-i} \in X, \quad u_{i}\left(s_{i}^{\prime}, s_{-i}\right)>u_{i}\left(s_{i}, s_{-i}\right)
$$

Let $p \in \Delta(X)$ be any probability measure. Then,

$$
\begin{array}{ll}
\forall s_{-i} \in X, & p\left(s_{-i}\right) \cdot u_{i}\left(s_{i}^{\prime}, s_{-i}\right) \geq p\left(s_{-i}\right) \cdot u_{i}\left(s_{i}, s_{-i}\right) \\
\exists s_{-i} \in X, & p\left(s_{-i}\right) \cdot u_{i}\left(s_{i}^{\prime}, s_{-i}\right)>p\left(s_{-i}\right) \cdot u_{i}\left(s_{i}, s_{-i}\right)
\end{array}
$$

Hence,

$$
\sum_{s_{-i} \in S_{-i}} p\left(s_{-i}\right) \cdot u_{i}\left(s_{i}^{\prime}, s_{-i}\right)>\sum_{s_{-i} \in S_{-i}} p\left(s_{-i}\right) \cdot u_{i}\left(s_{i}, s_{-i}\right)
$$

Suppose that $G=\left\langle N,\left\{S_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right\rangle$ is a finite strategic game.
Suppose that $s_{i} \in S_{i}$ is strictly dominated with respect to X :

$$
\exists s_{i}^{\prime} \in S_{i}, \forall s_{-i} \in X, \quad u_{i}\left(s_{i}^{\prime}, s_{-i}\right)>u_{i}\left(s_{i}, s_{-i}\right)
$$

Let $p \in \Delta(X)$ be any probability measure. Then,

$$
\begin{array}{ll}
\forall s_{-i} \in X, & p\left(s_{-i}\right) \cdot u_{i}\left(s_{i}^{\prime}, s_{-i}\right) \geq p\left(s_{-i}\right) \cdot u_{i}\left(s_{i}, s_{-i}\right) \\
\exists s_{-i} \in X, & p\left(s_{-i}\right) \cdot u_{i}\left(s_{i}^{\prime}, s_{-i}\right)>p\left(s_{-i}\right) \cdot u_{i}\left(s_{i}, s_{-i}\right)
\end{array}
$$

Hence,

$$
\sum_{s_{-i} \in S_{-i}} p\left(s_{-i}\right) \cdot u_{i}\left(s_{i}^{\prime}, s_{-i}\right)>\sum_{s_{-i} \in S_{-i}} p\left(s_{-i}\right) \cdot u_{i}\left(s_{i}, s_{-i}\right)
$$

So, $E U\left(s_{i}^{\prime}, p\right)>E U\left(s_{i}, p\right)$: s_{i} is not a best response to p.

For the converse direction, we sketch the proof for two player games and where $X=S_{-i} .{ }^{1}$
${ }^{1}$ The proof of the more general statement uses the supporting hyperplane theorem from convex analysis.

For the converse direction, we sketch the proof for two player games and where $X=S_{-i} .{ }^{1}$

Let $G=\left\langle S_{1}, S_{2}, u_{1}, u_{2}\right\rangle$ be a two-player game. (Let $U_{i}: \Delta\left(S_{1}\right) \times \Delta\left(S_{2}\right) \rightarrow \mathbb{R}$ be the expected utility for i)
${ }^{1}$ The proof of the more general statement uses the supporting hyperplane theorem from convex analysis.

For the converse direction, we sketch the proof for two player games and where $X=S_{-i} .{ }^{1}$

Let $G=\left\langle S_{1}, S_{2}, u_{1}, u_{2}\right\rangle$ be a two-player game.
(Let $U_{i}: \Delta\left(S_{1}\right) \times \Delta\left(S_{2}\right) \rightarrow \mathbb{R}$ be the expected utility for i)

Suppose that $\alpha \in \Delta\left(S_{1}\right)$ is not a best response to any $p \in \Delta\left(S_{2}\right)$.

$$
\forall p \in \Delta\left(S_{2}\right) \quad \exists q \in \Delta\left(S_{1}\right), \quad U_{1}(q, p)>U_{1}(\alpha, p)
$$

${ }^{1}$ The proof of the more general statement uses the supporting hyperplane theorem from convex analysis.

For the converse direction, we sketch the proof for two player games and where $X=S_{-i}{ }^{1}$

Let $G=\left\langle S_{1}, S_{2}, u_{1}, u_{2}\right\rangle$ be a two-player game.
(Let $U_{i}: \Delta\left(S_{1}\right) \times \Delta\left(S_{2}\right) \rightarrow \mathbb{R}$ be the expected utility for i)

Suppose that $\alpha \in \Delta\left(S_{1}\right)$ is not a best response to any $p \in \Delta\left(S_{2}\right)$.

$$
\forall p \in \Delta\left(S_{2}\right) \quad \exists q \in \Delta\left(S_{1}\right), \quad U_{1}(q, p)>U_{1}(\alpha, p)
$$

We can define a function $b: \Delta\left(S_{2}\right) \rightarrow \Delta\left(S_{1}\right)$ where, for each $p \in \Delta\left(S_{2}\right)$, $U_{1}(b(p), p)>U_{1}(\alpha, p)$.
${ }^{1}$ The proof of the more general statement uses the supporting hyperplane theorem from convex analysis.

Consider the game $G^{\prime}=\left\langle S_{1}, S_{2}, \bar{u}_{1}, \bar{u}_{2}\right\rangle$ where

$$
\bar{u}_{1}\left(s_{1}, s_{2}\right)=u_{1}\left(s_{1}, s_{2}\right)-U_{1}\left(\alpha, s_{2}\right) \text { and } \bar{u}_{2}\left(s_{1}, s_{2}\right)=-\bar{u}_{1}\left(s_{1}, s_{2}\right)
$$

Consider the game $G^{\prime}=\left\langle S_{1}, S_{2}, \bar{u}_{1}, \bar{u}_{2}\right\rangle$ where

$$
\bar{u}_{1}\left(s_{1}, s_{2}\right)=u_{1}\left(s_{1}, s_{2}\right)-U_{1}\left(\alpha, s_{2}\right) \text { and } \bar{u}_{2}\left(s_{1}, s_{2}\right)=-\bar{u}_{1}\left(s_{1}, s_{2}\right)
$$

By the minimax theorem, there is a Nash equilibrium $\left(p_{1}^{*}, p_{2}^{*}\right)$ such that for all $m \in \Delta\left(S_{2}\right)$,

$$
\bar{U}_{1}\left(p_{1}^{*}, m\right) \geq \bar{U}_{1}\left(p_{1}^{*}, p_{2}^{*}\right) \geq \bar{U}_{1}\left(b\left(p_{2}^{*}\right), p_{2}^{*}\right)
$$

Consider the game $G^{\prime}=\left\langle S_{1}, S_{2}, \bar{u}_{1}, \bar{u}_{2}\right\rangle$ where

$$
\bar{u}_{1}\left(s_{1}, s_{2}\right)=u_{1}\left(s_{1}, s_{2}\right)-U_{1}\left(\alpha, s_{2}\right) \text { and } \bar{u}_{2}\left(s_{1}, s_{2}\right)=-\bar{u}_{1}\left(s_{1}, s_{2}\right)
$$

By the minimax theorem, there is a Nash equilibrium $\left(p_{1}^{*}, p_{2}^{*}\right)$ such that for all $m \in \Delta\left(S_{2}\right)$,

$$
\bar{U}_{1}\left(p_{1}^{*}, m\right) \geq \bar{U}_{1}\left(p_{1}^{*}, p_{2}^{*}\right) \geq \bar{U}_{1}\left(b\left(p_{2}^{*}\right), p_{2}^{*}\right)
$$

We now prove that $\bar{U}_{1}\left(b\left(p_{2}^{*}\right), p_{2}^{*}\right)>0$:

$$
\bar{U}_{1}\left(b\left(p_{2}^{*}\right), p_{2}^{*}\right)=\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) \bar{u}_{1}(x, y)
$$

$$
\begin{aligned}
\bar{U}_{1}\left(b\left(p_{2}^{*}\right), p_{2}^{*}\right) & =\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) \bar{u}_{1}(x, y) \\
& =\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y)\left[u_{1}(x, y)-U_{1}(\alpha, y)\right]
\end{aligned}
$$

$$
\begin{aligned}
\bar{U}_{1}\left(b\left(p_{2}^{*}\right), p_{2}^{*}\right) & =\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) \bar{u}_{1}(x, y) \\
& =\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y)\left[u_{1}(x, y)-U_{1}(\alpha, y)\right] \\
& =\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) u_{1}(x, y) \\
& -\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) U_{1}(\alpha, y)
\end{aligned}
$$

$$
\begin{aligned}
\bar{U}_{1}\left(b\left(p_{2}^{*}\right), p_{2}^{*}\right) & =\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) \bar{u}_{1}(x, y) \\
& =\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y)\left[u_{1}(x, y)-U_{1}(\alpha, y)\right] \\
& =\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) u_{1}(x, y) \\
& -\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) U_{1}(\alpha, y) \\
& =U_{1}\left(b\left(p_{2}^{*}\right), p_{2}^{*}\right) \\
& -\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) U_{1}(\alpha, y)
\end{aligned}
$$

$$
\begin{aligned}
\bar{U}_{1}\left(b\left(p_{2}^{*}\right), p_{2}^{*}\right) & =\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) \bar{u}_{1}(x, y) \\
& =\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y)\left[u_{1}(x, y)-U_{1}(\alpha, y)\right] \\
& =\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) u_{1}(x, y) \\
& -\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) U_{1}(\alpha, y) \\
& =U_{1}\left(b\left(p_{2}^{*}\right), p_{2}^{*}\right) \\
& -\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) U_{1}(\alpha, y) \\
& >U_{1}\left(\alpha, p_{2}^{*}\right)-\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) U_{1}(\alpha, y)
\end{aligned}
$$

$$
\begin{aligned}
\bar{U}_{1}\left(b\left(p_{2}^{*}\right), p_{2}^{*}\right) & =\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) \bar{u}_{1}(x, y) \\
& =\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y)\left[u_{1}(x, y)-U_{1}(\alpha, y)\right] \\
& =\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) u_{1}(x, y) \\
& -\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) U_{1}(\alpha, y) \\
& =U_{1}\left(b\left(p_{2}^{*}\right), p_{2}^{*}\right) \\
& -\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) U_{1}(\alpha, y) \\
& >U_{1}\left(\alpha, p_{2}^{*}\right)-\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) U_{1}(\alpha, y) \\
& =U_{1}\left(\alpha, p_{2}^{*}\right)-\sum_{x \in S_{1}} b\left(p_{2}^{*}\right)(x) \sum_{y \in S_{2}} p_{2}^{*}(y) U_{1}(\alpha, y)
\end{aligned}
$$

$$
\begin{aligned}
\bar{U}_{1}\left(b\left(p_{2}^{*}\right), p_{2}^{*}\right) & =\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) \bar{u}_{1}(x, y) \\
& =\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y)\left[u_{1}(x, y)-U_{1}(\alpha, y)\right] \\
& =\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) u_{1}(x, y) \\
& -\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) U_{1}(\alpha, y) \\
& =U_{1}\left(b\left(p_{2}^{*}\right), p_{2}^{*}\right) \\
& -\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) U_{1}(\alpha, y) \\
& >U_{1}\left(\alpha, p_{2}^{*}\right)-\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) U_{1}(\alpha, y) \\
& =U_{1}\left(\alpha, p_{2}^{*}\right)-\sum_{x \in S_{1}} b\left(p_{2}^{*}\right)(x) \sum_{y \in S_{2}} p_{2}^{*}(y) U_{1}(\alpha, y) \\
& =U_{1}\left(\alpha, p_{2}^{*}\right)-U_{1}\left(\alpha, p_{2}^{*}\right) \cdot \sum_{x \in S_{1}} b\left(p_{2}^{*}\right)(x)
\end{aligned}
$$

$$
\begin{aligned}
\bar{U}_{1}\left(b\left(p_{2}^{*}\right), p_{2}^{*}\right) & =\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) \bar{u}_{1}(x, y) \\
& =\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y)\left[u_{1}(x, y)-U_{1}(\alpha, y)\right] \\
& =\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) u_{1}(x, y) \\
& -\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) U_{1}(\alpha, y) \\
& =U_{1}\left(b\left(p_{2}^{*}\right), p_{2}^{*}\right) \\
& -\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) U_{1}(\alpha, y) \\
& >U_{1}\left(\alpha, p_{2}^{*}\right)-\sum_{x \in S_{1}} \sum_{y \in S_{2}} b\left(p_{2}^{*}\right)(x) p_{2}^{*}(y) U_{1}(\alpha, y) \\
& =U_{1}\left(\alpha, p_{2}^{*}\right)-\sum_{x \in S_{1}} b\left(p_{2}^{*}\right)(x) \sum_{y \in S_{2}} p_{2}^{*}(y) U_{1}(\alpha, y) \\
& =U_{1}\left(\alpha, p_{2}^{*}\right)-U_{1}\left(\alpha, p_{2}^{*}\right) \cdot \sum_{x \in S_{1}} b\left(p_{2}^{*}\right)(x) \\
& =U_{1}\left(\alpha, p_{2}^{*}\right)-U_{1}\left(\alpha, p_{2}^{*}\right)=0
\end{aligned}
$$

Hence, for all $m \in \Delta\left(S_{2}\right)$ we have

$$
\bar{U}\left(p_{1}^{*}, m\right) \geq \bar{U}_{1}\left(p_{1}^{*}, p_{2}^{*}\right) \geq \bar{U}_{1}\left(b\left(p_{2}^{*}\right), p_{2}^{*}\right)>0
$$

Hence, for all $m \in \Delta\left(S_{2}\right)$ we have

$$
\bar{U}\left(p_{1}^{*}, m\right) \geq \bar{U}_{1}\left(p_{1}^{*}, p_{2}^{*}\right) \geq \bar{U}_{1}\left(b\left(p_{2}^{*}\right), p_{2}^{*}\right)>0
$$

which implies for all $m \in \Delta\left(S_{2}\right), U_{1}\left(p_{1}^{*}, m\right)>U_{1}(\alpha, m)$, and so α is strictly dominated by p_{1}^{*}.

Important Issue: Correlated Beliefs

x	I	r
u	$1,1,3$	$1,0,3$
d	$0,1,0$	$0,0,0$

y	l	r
u	$1,1,2$	$1,0,0$
d	$0,1,0$	$1,1,2$

z	l	r
u	$1,1,0$	$1,0,0$
d	$0,1,3$	$0,0,3$

Important Issue: Correlated Beliefs

x	l	r
u	$1,1,3$	$1,0,3$
d	$0,1,0$	$0,0,0$

y	l	r
u	$1,1,2$	$1,0,0$
d	$0,1,0$	$1,1,2$

z	l	r
u	$1,1,0$	$1,0,0$
d	$0,1,3$	$0,0,3$

- Note that y is not strictly dominated for Charles.

Important Issue: Correlated Beliefs

x	l	r
u	$1,1,3$	$1,0,3$
d	$0,1,0$	$0,0,0$

y	l	r
u	$1,1,2$	$1,0,0$
d	$0,1,0$	$1,1,2$

z	l	r
u	$1,1,0$	$1,0,0$
d	$0,1,3$	$0,0,3$

- Note that y is not strictly dominated for Charles.
- It is easy to find a probability measure $p \in \Delta\left(S_{A} \times S_{B}\right)$ such that y is a best response to p. Suppose that $p(u, I)=p(d, r)=\frac{1}{2}$. Then, $E U(x, p)=E U(z, p)=1.5$ while $E U(y, p)=2$.

Important Issue: Correlated Beliefs

x	l	r
u	$1,1,3$	$1,0,3$
d	$0,1,0$	$0,0,0$

y	l	r
u	$1,1,2$	$1,0,0$
d	$0,1,0$	$1,1,2$

z	l	r
u	$1,1,0$	$1,0,0$
d	$0,1,3$	$0,0,3$

- Note that y is not strictly dominated for Charles.
- It is easy to find a probability measure $p \in \Delta\left(S_{A} \times S_{B}\right)$ such that y is a best response to p. Suppose that $p(u, I)=p(d, r)=\frac{1}{2}$. Then, $E U(x, p)=E U(z, p)=1.5$ while $E U(y, p)=2$.
- However, there is no probability measure $p \in \Delta\left(S_{A} \times S_{B}\right)$ such that y is a best response to p and $p(u, I)=p(u) \cdot p(I)$.

x	l	r
u	$1,1,3$	$1,0,3$
d	$0,1,0$	$0,0,0$

y	l	r
u	$1,1,2$	$1,0,0$
d	$0,1,0$	$1,1,2$

z	l	r
u	$1,1,0$	$1,0,0$
d	$0,1,3$	$0,0,3$

- To see this, suppose that a is the probability assigned to u and b is the probability assigned to I. Then, we have:
- The expected utility of y is $2 a b+2(1-a)(1-b)$;
- The expected utility of x is $3 a b+3 a(1-b)=3 a(b+(1-b))=3 a$; and
- The expected utility of z is

$$
3(1-a) b+3(1-a)(1-b)=3(1-a)(b+(1-b))=3(1-a) .
$$

Given a sequence of sets of strategies S_{1}, \ldots, S_{n} and $s \in S_{1} \times \cdots \times S_{n}$, the following is standard notation:

- $s_{-i}:=\left(s_{1}, \ldots, s_{i-i}, s_{i+1}, \ldots, s_{n}\right)$
- $S_{-i}=S_{1} \times \cdots \times S_{-i} \times S_{i+1} \times \cdots S_{n}$

Given a sequence of sets of strategies S_{1}, \ldots, S_{n} and $s \in S_{1} \times \cdots \times S_{n}$, the following is standard notation:

- $s_{-i}:=\left(s_{1}, \ldots, s_{i-i}, s_{i+1}, \ldots, s_{n}\right)$
- $S_{-i}=S_{1} \times \cdots \times S_{-i} \times S_{i+1} \times \cdots S_{n}$

We say that $G=\left(S_{1}, \ldots S_{n}\right)$ is a restriction of a game $H=\left(T_{1}, \ldots, T_{n}, u_{1}, \ldots, u_{n}\right)$ provided $S_{i} \subseteq T_{i}$ for all $i=1, \ldots n$.

Given a sequence of sets of strategies S_{1}, \ldots, S_{n} and $s \in S_{1} \times \cdots \times S_{n}$, the following is standard notation:

- $s_{-i}:=\left(s_{1}, \ldots, s_{i-i}, s_{i+1}, \ldots, s_{n}\right)$
- $S_{-i}=S_{1} \times \cdots \times S_{i-i} \times S_{i+1} \times \cdots S_{n}$

We say that $G=\left(S_{1}, \ldots S_{n}\right)$ is a restriction of a game $H=\left(T_{1}, \ldots, T_{n}, u_{1}, \ldots, u_{n}\right)$ provided $S_{i} \subseteq T_{i}$ for all $i=1, \ldots n$.

A restriction G where each S_{i} is nonempty is associated with a unique subgame, $\bar{G}=\left(S_{1}, \ldots, S_{n}, u_{1}^{\prime}, \ldots u_{n}^{\prime}\right)$ where $u_{i}^{\prime}=\left.u_{i}\right|_{S_{1} \times \ldots S_{n}}$ (each u_{i}^{\prime} is the restriction of u_{i} to the strategies in S_{i}).

Given a sequence of sets of strategies S_{1}, \ldots, S_{n} and $s \in S_{1} \times \cdots \times S_{n}$, the following is standard notation:

- $s_{-i}:=\left(s_{1}, \ldots, s_{i-i}, s_{i+1}, \ldots, s_{n}\right)$
- $S_{-i}=S_{1} \times \cdots \times S_{i-i} \times S_{i+1} \times \cdots S_{n}$

We say that $G=\left(S_{1}, \ldots S_{n}\right)$ is a restriction of a game $H=\left(T_{1}, \ldots, T_{n}, u_{1}, \ldots, u_{n}\right)$ provided $S_{i} \subseteq T_{i}$ for all $i=1, \ldots n$.

A restriction G where each S_{i} is nonempty is associated with a unique subgame, $\bar{G}=\left(S_{1}, \ldots, S_{n}, u_{1}^{\prime}, \ldots u_{n}^{\prime}\right)$ where $u_{i}^{\prime}=\left.u_{i}\right|_{S_{1} \times \ldots S_{n}}$ (each u_{i}^{\prime} is the restriction of u_{i} to the strategies in S_{i}).

A restriction where some S_{i} are empty is called an empty restriction.

Restrictions of a game H can be ordered by the component-wise subset relation:

$$
G=\left(S_{1} \ldots, S_{n}\right) \subseteq\left(S_{1}^{\prime}, \ldots, S_{n}^{\prime}\right)=G^{\prime} \text { iff } S_{i} \subseteq S_{i}^{\prime} \text { for all } i=1, \ldots n
$$

Beliefs, or Conjectures

Fix a game $H=\left(T_{1}, \ldots, T_{n}, u_{1}, \ldots, u_{n}\right)$
For each player let \mathcal{B}_{i} be a set of beliefs (for now, this is an unspecified set)

Each u_{i} is associated with a expected payoff function $U_{i}: S_{i} \times \mathcal{B}_{i} \rightarrow \mathbb{R}$.
A belief \mathcal{B}_{i} of player i in H can be narrowed to any restriction G of H. This narrowing of H to G is denoted: $\mathcal{B}_{i} \cap G$

We call the pair $(\mathcal{B}, \dot{\cap})$ a belief structure in the game H where $\mathcal{B}=\mathcal{B}_{1} \times \cdots \times \mathcal{B}_{n}$ and the following property is satisfied:

If $G_{1} \subseteq G_{2} \subseteq H$, then for all $i=1, \ldots, n, \mathcal{B}_{i} \dot{\cap} G_{1} \subseteq \mathcal{B}_{i} \cap G_{2}$.

Examples

1. For $i=1, \ldots, n \mathcal{B}_{i}:=T_{-i}$ and for a restriction $G=\left(S_{1}, \ldots, S_{n}\right)$ of $H, \mathcal{B}_{i} \cap G:=S_{-i}$

Then $(\mathcal{B}, \dot{\cap})$ is the pure belief structure in H.

Examples

1. For $i=1, \ldots, n \mathcal{B}_{i}:=T_{-i}$ and for a restriction $G=\left(S_{1}, \ldots, S_{n}\right)$ of $H, \mathcal{B}_{i} \cap \dot{G}:=S_{-i}$

Then $(\mathcal{B}, \dot{\cap})$ is the pure belief structure in H.
2. Given a finite strategic game, let H be the mixed extension, so $H=\left(I_{1}, \ldots, I_{n}, U_{1}, \ldots, U_{n}\right)$ where $I_{i}=\Delta S_{i}$, where ΔX is the set of probability measures on X.

Then, for a restriction $G=\left(S_{1}, \ldots, S_{n}\right)$ of $H, \mathcal{B}_{i} \dot{\cap} G:=\Pi_{j \neq i} \overline{S_{j}}$, where $\overline{S_{j}}$ is the convex hull of a set S_{j} of mixed strategies.

Examples

3. Assume H is a finite game. For $i=1, \ldots, n, \mathcal{B}_{i}:=\Pi_{j \neq i} \Delta T_{j}$ and for a restriction $G=\left(S_{1}, \ldots, S_{n}\right)$ of $H, \mathcal{B}_{i} \cap G:=\Pi_{j \neq i} \Delta S_{j}$

Examples

3. Assume H is a finite game. For $i=1, \ldots, n, \mathcal{B}_{i}:=\Pi_{j \neq i} \Delta T_{j}$ and for a restriction $G=\left(S_{1}, \ldots, S_{n}\right)$ of $H, \mathcal{B}_{i} \cap \mathfrak{G}:=\Pi_{j \neq i} \Delta S_{j}$
4. Assume H is finite. For $i=1, \ldots, n, \mathcal{B}_{i}:=\Pi_{j \neq i} \Delta T_{-i}$ and for a restriction $G=\left(S_{1}, \ldots, S_{n}\right)$ of $H, \mathcal{B}_{i} \cap \operatorname{Ci}:=\Delta S_{-i}$

Examples

3. Assume H is a finite game. For $i=1, \ldots, n, \mathcal{B}_{i}:=\Pi_{j \neq i} \Delta T_{j}$ and for a restriction $G=\left(S_{1}, \ldots, S_{n}\right)$ of $H, \mathcal{B}_{i} \cap \mathfrak{G}:=\Pi_{j \neq i} \Delta S_{j}$
4. Assume H is finite. For $i=1, \ldots, n, \mathcal{B}_{i}:=\Pi_{j \neq i} \Delta T_{-i}$ and for a restriction $G=\left(S_{1}, \ldots, S_{n}\right)$ of $H, \mathcal{B}_{i} \cap G:=\Delta S_{-i}$
5. Assume H is a finite game. For $i=1, \ldots, n, \mathcal{B}_{i}:=\Pi_{j \neq i} \Delta^{\circ} T_{j}$, where for a set $X, \Delta^{\circ} X$ is the set of probabilities measures that assign positive probability to each element of X, and for a restriction $G=\left(S_{1}, \ldots, S_{n}\right)$ of $H, \mathcal{B}_{i} \cap \operatorname{Ci}:=\Pi_{j \neq i} \Delta^{\circ} S_{j}$

Theorem. In all models where the players are rational and there is common belief of rationality, the players choose strategies that survive iterative removal of strictly dominated strategies (and, conversely...).

Subgames

Let $H=\left\langle H_{1}, \ldots, H_{n}, u_{1}, \ldots, u_{n}\right\rangle$ be an arbitrary strategic game.

Subgames

Let $H=\left\langle H_{1}, \ldots, H_{n}, u_{1}, \ldots, u_{n}\right\rangle$ be an arbitrary strategic game.

A restriction of H is a sequence $G=\left(G_{1}, \ldots, G_{n}\right)$ such that $G_{i} \subseteq H_{i}$ for all $i \in\{1, \ldots, n\}$.

The set of all restrictions of a game H ordered by componentwise set inclusion forms a complete lattice.

Game Models

Relational models: $\left\langle W, R_{i}\right\rangle$ where $R_{i} \subseteq W \times W$. Write $R_{i}(w)=\left\{v \mid w R_{i} v\right\}$.

Events: $E \subseteq W$
Knowledge/Belief: $\square E=\left\{w \mid R_{i}(w) \subseteq E\right\}$
Common knowledge/belief:
$\square^{1} E=\square E$
$\square^{k+1} E=\square \square^{k} E$
$\square^{*} E=\bigcap_{k=1}^{\infty} \square^{k} E$
Fact. An event F is called evident provided $F \subseteq \square F . w \in \square^{*} E$ provided there is an evident event F such that $w \in F \subseteq \square E$.

Game Models

Let $G=\left(G_{1}, \ldots, G_{n}\right)$ be a restriction of a game H.
A knowledge/belief model of G is a tuple $\left\langle W, R_{1}, \ldots, R_{n}, \sigma_{1}, \ldots, \sigma_{n}\right\rangle$ where $\left\langle W, R_{1}, \ldots, R_{n}\right\rangle$ is a knowledge/belief model and $\sigma_{i}: W \rightarrow G_{i}$.

Game Models

Let $G=\left(G_{1}, \ldots, G_{n}\right)$ be a restriction of a game H.
A knowledge/belief model of G is a tuple $\left\langle W, R_{1}, \ldots, R_{n}, \sigma_{1}, \ldots, \sigma_{n}\right\rangle$ where $\left\langle W, R_{1}, \ldots, R_{n}\right\rangle$ is a knowledge/belief model and $\sigma_{i}: W \rightarrow G_{i}$.

Given a model $\left\langle W, R_{1}, \ldots, R_{n}, \sigma_{1}, \ldots \sigma_{n}\right\rangle$ for a restriction G and a sequence $\bar{E}=\left\{E_{1}, \ldots, E_{n}\right\}$ where $E_{i} \subseteq W$,

$$
G_{\bar{E}}=\left(\sigma_{1}\left(E_{1}\right), \ldots, \sigma_{n}\left(E_{n}\right)\right)
$$

Some Lattice Theory

- (D, \subseteq) is a lattice with largest element $T . T: D \rightarrow D$ an operator.

Some Lattice Theory

- (D, \subseteq) is a lattice with largest element $T . T: D \rightarrow D$ an operator.
- T is monotonic if for all $G, G^{\prime}, G \subseteq G^{\prime}$ implies $T(G) \subseteq T\left(G^{\prime}\right)$

Some Lattice Theory

- (D, \subseteq) is a lattice with largest element $T . T: D \rightarrow D$ an operator.
- T is monotonic if for all $G, G^{\prime}, G \subseteq G^{\prime}$ implies $T(G) \subseteq T\left(G^{\prime}\right)$
- G is a fixed-point if $T(G)=G$

Some Lattice Theory

- (D, \subseteq) is a lattice with largest element $T . T: D \rightarrow D$ an operator.
- T is monotonic if for all $G, G^{\prime}, G \subseteq G^{\prime}$ implies $T(G) \subseteq T\left(G^{\prime}\right)$
- G is a fixed-point if $T(G)=G$
- νT is the largest fixed point of T

Some Lattice Theory

- (D, \subseteq) is a lattice with largest element $T . T: D \rightarrow D$ an operator.
- T is monotonic if for all $G, G^{\prime}, G \subseteq G^{\prime}$ implies $T(G) \subseteq T\left(G^{\prime}\right)$
- G is a fixed-point if $T(G)=G$
- νT is the largest fixed point of T
- T^{∞} is the "outcome of $T: T^{0}=T, T^{\alpha+1}=T\left(T^{\alpha}\right)$,
$T^{\beta}=\bigcap_{\alpha<\beta} T^{\alpha}$, The outcome of iterating T is the least α such that $T^{\alpha+1}=T^{\alpha}$, denoted T^{∞}

Some Lattice Theory

- (D, \subseteq) is a lattice with largest element $T . T: D \rightarrow D$ an operator.
- T is monotonic if for all $G, G^{\prime}, G \subseteq G^{\prime}$ implies $T(G) \subseteq T\left(G^{\prime}\right)$
- G is a fixed-point if $T(G)=G$
- νT is the largest fixed point of T
- T^{∞} is the "outcome of $T: T^{0}=T, T^{\alpha+1}=T\left(T^{\alpha}\right)$, $T^{\beta}=\bigcap_{\alpha<\beta} T^{\alpha}$, The outcome of iterating T is the least α such that $T^{\alpha+1}=T^{\alpha}$, denoted T^{∞}
- Tarski's Fixed-Point Theorem: Every monotonic operator T has a (least and largest) fixed point $T^{\infty}=\nu T=\bigcup\{G \mid G \subseteq T(G)\}$.

Some Lattice Theory

- (D, \subseteq) is a lattice with largest element $T . T: D \rightarrow D$ an operator.
- T is monotonic if for all $G, G^{\prime}, G \subseteq G^{\prime}$ implies $T(G) \subseteq T\left(G^{\prime}\right)$
- G is a fixed-point if $T(G)=G$
- νT is the largest fixed point of T
- T^{∞} is the "outcome of $T: T^{0}=T, T^{\alpha+1}=T\left(T^{\alpha}\right)$, $T^{\beta}=\bigcap_{\alpha<\beta} T^{\alpha}$, The outcome of iterating T is the least α such that $T^{\alpha+1}=T^{\alpha}$, denoted T^{∞}
- Tarski's Fixed-Point Theorem: Every monotonic operator T has a (least and largest) fixed point $T^{\infty}=\nu T=\bigcup\{G \mid G \subseteq T(G)\}$.
- T is contracting if $T(G) \subseteq G$. Every contracting operator has an outcome (T^{∞} is well-defined)

Rationality Properties

$\varphi\left(s_{i}, G_{i}, G_{-i}\right)$ holds between a strategy $s_{i} \in H_{i}$, a set of strategies G_{i} for player i and strategies G_{-i} of the opponents. Intuitively s_{i} is φ-optimal strategy for player i in the restricted game $\left\langle G_{i}, G_{-i}, u_{1}, \ldots, u_{n}\right\rangle$ (where the payoffs are suitably restricted).

Rationality Properties

$\varphi\left(s_{i}, G_{i}, G_{-i}\right)$ holds between a strategy $s_{i} \in H_{i}$, a set of strategies G_{i} for player i and strategies G_{-i} of the opponents. Intuitively s_{i} is φ-optimal strategy for player i in the restricted game $\left\langle G_{i}, G_{-i}, u_{1}, \ldots, u_{n}\right\rangle$ (where the payoffs are suitably restricted).
φ_{i} is monotonic if for all $G_{-i}, G_{-i}^{\prime} \subseteq H_{-i}$ and $s_{i} \in H_{i}$

$$
G_{-i} \subseteq G_{-i}^{\prime} \text { and } \varphi\left(s_{i}, H_{i}, G_{-i}\right) \text { implies } \varphi\left(s_{i}, H_{i}, G_{-i}^{\prime}\right)
$$

Removing Strategies

If $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$, then define $T_{\varphi}(G)=G^{\prime}$ where

- $G=\left(G_{1}, \ldots, G_{n}\right), G^{\prime}=\left(G_{1}^{\prime}, \ldots, G_{n}^{\prime}\right)$,
- for all $i \in\{1, \ldots, n\}, \quad G_{i}^{\prime}=\left\{s_{i} \in G_{i} \mid \varphi_{i}\left(s_{i}, H_{i}, G_{-i}\right)\right\}$

Removing Strategies

If $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$, then define $T_{\varphi}(G)=G^{\prime}$ where

- $G=\left(G_{1}, \ldots, G_{n}\right), G^{\prime}=\left(G_{1}^{\prime}, \ldots, G_{n}^{\prime}\right)$,
- for all $i \in\{1, \ldots, n\}, \quad G_{i}^{\prime}=\left\{s_{i} \in G_{i} \mid \varphi_{i}\left(s_{i}, H_{i}, G_{-i}\right)\right\}$
T_{φ} is contracting, so it has an outcome T_{φ}^{∞}

Removing Strategies

If $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$, then define $T_{\varphi}(G)=G^{\prime}$ where

- $G=\left(G_{1}, \ldots, G_{n}\right), G^{\prime}=\left(G_{1}^{\prime}, \ldots, G_{n}^{\prime}\right)$,
- for all $i \in\{1, \ldots, n\}, \quad G_{i}^{\prime}=\left\{s_{i} \in G_{i} \mid \varphi_{i}\left(s_{i}, H_{i}, G_{-i}\right)\right\}$
T_{φ} is contracting, so it has an outcome T_{φ}^{∞}

If each φ_{i} is monotonic, then νT_{φ} exists and equals T_{φ}^{∞}.

Rational Play

Let $H=\left\langle H_{1}, \ldots, H_{n}, u_{1}, \ldots, u_{n}\right\rangle$ a strategic game and $\left\langle W, R_{1}, \ldots, R_{n}, \sigma_{1}, \ldots, \sigma_{n}\right\rangle$ a model for H.
$\sigma_{i}(w)$ is the strategy player is using in state w.
$G_{R_{i}(w)}$ is a restriction of H giving i 's view of the game.

Rational Play

Let $H=\left\langle H_{1}, \ldots, H_{n}, u_{1}, \ldots, u_{n}\right\rangle$ a strategic game and $\left\langle W, R_{1}, \ldots, R_{n}, \sigma_{1}, \ldots, \sigma_{n}\right\rangle$ a model for H.
$\sigma_{i}(w)$ is the strategy player is using in state w.
$G_{R_{i}(w)}$ is a restriction of H giving i 's view of the game.
Player i is φ_{i}-rational in the state w if $\varphi_{i}\left(\sigma_{i}(w), H_{i},\left(G_{R_{i}(w)}\right)_{-i}\right)$ holds.

Rational Play

Let $H=\left\langle H_{1}, \ldots, H_{n}, u_{1}, \ldots, u_{n}\right\rangle$ a strategic game and $\left\langle W, R_{1}, \ldots, R_{n}, \sigma_{1}, \ldots, \sigma_{n}\right\rangle$ a model for H.
$\sigma_{i}(w)$ is the strategy player is using in state w.
$G_{R_{i}(w)}$ is a restriction of H giving i 's view of the game.
Player i is φ_{i}-rational in the state w if $\varphi_{i}\left(\sigma_{i}(w), H_{i},\left(G_{R_{i}(w)}\right)_{-i}\right)$ holds.
$\boldsymbol{\operatorname { R a t }}(\varphi)=\left\{w \in W \mid\right.$ each player is φ_{i}-rational in $\left.w\right\}$
$\square \boldsymbol{\operatorname { R a t }}(\varphi)$
$\square * \operatorname{Rat}(\varphi)$

Theorem (Apt and Zvesper).

- Suppose that each φ_{i} is monotonic. Then for all belief models for H,

$$
G_{\operatorname{Rat}(\varphi) \cap B^{*}(\operatorname{Rat}(\varphi))} \subseteq T_{\varphi}^{\infty}
$$

- Suppose that each φ_{i} is monotonic. Then for all knowledge models for H,

$$
G_{K^{*}(\operatorname{Rat}(\varphi))} \subseteq T_{\varphi}^{\infty}
$$

- For some standard knowledge model for H,

$$
T_{\varphi}^{\infty} \subseteq G_{K^{*}(\operatorname{Rat}(\varphi))}
$$

K. Apt and J. Zvesper. The Role of Monotonicity in the Epistemic Analysis of Games. Games, 1(4), pgs. 381-394, 2010.

Claim If each φ_{i} is monotonic, then $G_{\operatorname{Rat}(\varphi) \cap \square * \operatorname{Rat}(\varphi)} \subseteq T_{\varphi}^{\infty}$.

Claim If each φ_{i} is monotonic, then $G_{\operatorname{Rat}(\varphi) \cap \square * \operatorname{Rat}(\varphi)} \subseteq T_{\varphi}^{\infty}$.

Let s_{i} be an element of the i th component of $G_{\operatorname{Rat}(\varphi) \cap \square * \operatorname{Rat}(\varphi)}$: $s_{i}=\sigma_{i}(w)$ for some $w \in \boldsymbol{\operatorname { R a t }}(\varphi) \cap \square^{*} \boldsymbol{\operatorname { R a t }}(\varphi)$

Claim If each φ_{i} is monotonic, then $G_{\operatorname{Rat}(\varphi) \cap \square * \operatorname{Rat}(\varphi)} \subseteq T_{\varphi}^{\infty}$.

Let s_{i} be an element of the i th component of $G_{\operatorname{Rat}(\varphi) \cap \square * \operatorname{Rat}(\varphi)}$: $s_{i}=\sigma_{i}(w)$ for some $w \in \boldsymbol{\operatorname { R a t }}(\varphi) \cap \square^{*} \boldsymbol{\operatorname { R a t }}(\varphi)$
there is an F such that $F \subseteq \square F$ and

$$
w \in F \subseteq \square \boldsymbol{\operatorname { R a t }}(\varphi)=\left\{v \in W \mid \forall i R_{i}(v) \subseteq \boldsymbol{\operatorname { R a t }}(\varphi)\right\}
$$

Claim If each φ_{i} is monotonic, then $G_{\operatorname{Rat}(\varphi) \cap \square * \operatorname{Rat}(\varphi)} \subseteq T_{\varphi}^{\infty}$.

Let s_{i} be an element of the i th component of $G_{\operatorname{Rat}(\varphi) \cap \square * \operatorname{Rat}(\varphi)}$: $s_{i}=\sigma_{i}(w)$ for some $w \in \boldsymbol{\operatorname { R a t }}(\varphi) \cap \square^{*} \boldsymbol{\operatorname { R a t }}(\varphi)$
there is an F such that $F \subseteq \square F$ and

$$
w \in F \subseteq \square \boldsymbol{\operatorname { R a t }}(\varphi)=\left\{v \in W \mid \forall i R_{i}(v) \subseteq \boldsymbol{\operatorname { R a t }}(\varphi)\right\}
$$

Claim. $G_{F \cap \operatorname{Rat}(\varphi)}$ is post-fixed point of $T_{\varphi}\left(G_{F \cap \operatorname{Rat}(\varphi)} \subseteq T_{\varphi}\left(G_{F \cap \operatorname{Rat}(\varphi)}\right)\right)$.

Claim If each φ_{i} is monotonic, then $G_{\operatorname{Rat}(\varphi) \cap \square * \operatorname{Rat}(\varphi)} \subseteq T_{\varphi}^{\infty}$.

Let s_{i} be an element of the i th component of $G_{\operatorname{Rat}(\varphi) \cap \square * \operatorname{Rat}(\varphi)}$: $s_{i}=\sigma_{i}(w)$ for some $w \in \boldsymbol{\operatorname { R a t }}(\varphi) \cap \square^{*} \boldsymbol{\operatorname { R a t }}(\varphi)$
there is an F such that $F \subseteq \square F$ and

$$
w \in F \subseteq \square \boldsymbol{\operatorname { R a t }}(\varphi)=\left\{v \in W \mid \forall i \boldsymbol{R}_{i}(v) \subseteq \boldsymbol{\operatorname { R a t }}(\varphi)\right\}
$$

Claim. $G_{F \cap \operatorname{Rat}(\varphi)}$ is post-fixed point of $T_{\varphi}\left(G_{F \cap \operatorname{Rat}(\varphi)} \subseteq T_{\varphi}\left(G_{F \cap \operatorname{Rat}(\varphi)}\right)\right)$.
Since each φ_{i} is monotonic, T_{φ} is monotonic and by Tarski's fixed-point theorem, $G_{F \cap \operatorname{Rat}(\varphi)} \subseteq T_{\varphi}^{\infty}$. But $s_{i}=\sigma_{i}(w)$ and $w \in F \cap \boldsymbol{\operatorname { R a t }}(\varphi)$, so s_{i} is the i th component in T_{φ}^{∞}.
$F \subseteq \square F$ and $w \in F \subseteq \square \boldsymbol{\operatorname { R a t }}(\varphi)=\left\{v \in W \mid \forall i R_{i}(v) \subseteq \boldsymbol{\operatorname { R a t }}(\varphi)\right\}$
Claim. $G_{F \cap \operatorname{Rat}(\varphi)}$ is post-fixed point of $T_{\varphi}\left(G_{F \cap \operatorname{Rat}(\varphi)} \subseteq T_{\varphi}\left(G_{F \cap \operatorname{Rat}(\varphi)}\right)\right)$.
$F \subseteq \square F$ and $w \in F \subseteq \square \boldsymbol{\operatorname { R a t }}(\varphi)=\left\{v \in W \mid \forall i R_{i}(v) \subseteq \boldsymbol{\operatorname { R a t }}(\varphi)\right\}$
Claim. $G_{F \cap \operatorname{Rat}(\varphi)}$ is post-fixed point of $T_{\varphi}\left(G_{F \cap \operatorname{Rat}(\varphi)} \subseteq T_{\varphi}\left(G_{F \cap \operatorname{Rat}(\varphi)}\right)\right)$.
Let $w^{\prime} \in F \cap \boldsymbol{\operatorname { R a t }}(\varphi)$ and let $i \in\{1, \ldots, n\}$.
$F \subseteq \square F$ and $w \in F \subseteq \square \boldsymbol{\operatorname { R a t }}(\varphi)=\left\{v \in W \mid \forall i R_{i}(v) \subseteq \boldsymbol{\operatorname { R a t }}(\varphi)\right\}$
Claim. $G_{F \cap \operatorname{Rat}(\varphi)}$ is post-fixed point of $T_{\varphi}\left(G_{F \cap \operatorname{Rat}(\varphi)} \subseteq T_{\varphi}\left(G_{F \cap \operatorname{Rat}(\varphi)}\right)\right)$.
Let $w^{\prime} \in F \cap \boldsymbol{\operatorname { R a t }}(\varphi)$ and let $i \in\{1, \ldots, n\}$.
Since $w^{\prime} \in \boldsymbol{\operatorname { R a t }}(\varphi), \varphi_{i}\left(\sigma_{i}\left(w^{\prime}\right), H_{i},\left(G_{R_{i}(w)}\right)_{-i}\right)$ holds.
$F \subseteq \square F$ and $w \in F \subseteq \square \boldsymbol{\operatorname { R a t }}(\varphi)=\left\{v \in W \mid \forall i R_{i}(v) \subseteq \boldsymbol{\operatorname { R a t }}(\varphi)\right\}$
Claim. $G_{F \cap \operatorname{Rat}(\varphi)}$ is post-fixed point of $T_{\varphi}\left(G_{F \cap \operatorname{Rat}(\varphi)} \subseteq T_{\varphi}\left(G_{F \cap \operatorname{Rat}(\varphi)}\right)\right)$.
Let $w^{\prime} \in F \cap \boldsymbol{\operatorname { R a t }}(\varphi)$ and let $i \in\{1, \ldots, n\}$.
Since $w^{\prime} \in \boldsymbol{\operatorname { R a t }}(\varphi), \varphi_{i}\left(\sigma_{i}\left(w^{\prime}\right), H_{i},\left(G_{R_{i}(w)}\right)_{-i}\right)$ holds.
F is evident, so $R_{i}\left(w^{\prime}\right) \subseteq F$. We also have $R_{i}\left(w^{\prime}\right) \subseteq \boldsymbol{\operatorname { R a t }}(\varphi)$.
$F \subseteq \square F$ and $w \in F \subseteq \square \boldsymbol{\operatorname { R a t }}(\varphi)=\left\{v \in W \mid \forall i R_{i}(v) \subseteq \boldsymbol{\operatorname { R a t }}(\varphi)\right\}$
Claim. $G_{F \cap \operatorname{Rat}(\varphi)}$ is post-fixed point of $T_{\varphi}\left(G_{F \cap \operatorname{Rat}(\varphi)} \subseteq T_{\varphi}\left(G_{F \cap \operatorname{Rat}(\varphi)}\right)\right)$.
Let $w^{\prime} \in F \cap \boldsymbol{\operatorname { R a t }}(\varphi)$ and let $i \in\{1, \ldots, n\}$.
Since $w^{\prime} \in \boldsymbol{\operatorname { R a t }}(\varphi), \varphi_{i}\left(\sigma_{i}\left(w^{\prime}\right), H_{i},\left(G_{R_{i}(w)}\right)_{-i}\right)$ holds.
F is evident, so $R_{i}\left(w^{\prime}\right) \subseteq F$. We also have $R_{i}\left(w^{\prime}\right) \subseteq \boldsymbol{\operatorname { R a t }}(\varphi)$. Hence, $R_{i}\left(w^{\prime}\right) \subseteq F \cap \boldsymbol{\operatorname { R a t }}(\varphi)$.
$F \subseteq \square F$ and $w \in F \subseteq \square \boldsymbol{\operatorname { R a t }}(\varphi)=\left\{v \in W \mid \forall i R_{i}(v) \subseteq \boldsymbol{\operatorname { R a t }}(\varphi)\right\}$
Claim. $G_{F \cap \operatorname{Rat}(\varphi)}$ is post-fixed point of $T_{\varphi}\left(G_{F \cap \operatorname{Rat}(\varphi)} \subseteq T_{\varphi}\left(G_{F \cap \operatorname{Rat}(\varphi)}\right)\right)$.
Let $w^{\prime} \in F \cap \boldsymbol{\operatorname { R a t }}(\varphi)$ and let $i \in\{1, \ldots, n\}$.
Since $w^{\prime} \in \boldsymbol{\operatorname { R a t }}(\varphi), \varphi_{i}\left(\sigma_{i}\left(w^{\prime}\right), H_{i},\left(G_{R_{i}(w)}\right)_{-i}\right)$ holds.
F is evident, so $R_{i}\left(w^{\prime}\right) \subseteq F$. We also have $R_{i}\left(w^{\prime}\right) \subseteq \boldsymbol{\operatorname { R a t }}(\varphi)$.
Hence, $R_{i}\left(w^{\prime}\right) \subseteq F \cap \operatorname{Rat}(\varphi)$.
This implies $\left(G_{R_{i}\left(w^{\prime}\right)}\right) \subseteq\left(G_{F \cap \operatorname{Rat}(\varphi)}\right)_{-i}$, and so by monotonicity of φ_{i}, $\varphi_{i}\left(s_{i}, H_{i},\left(G_{F \cap \operatorname{Rat}(\varphi)}\right)_{-i}\right)$ holds.
$F \subseteq \square F$ and $w \in F \subseteq \square \boldsymbol{\operatorname { R a t }}(\varphi)=\left\{v \in W \mid \forall i R_{i}(v) \subseteq \boldsymbol{\operatorname { R a t }}(\varphi)\right\}$
Claim. $G_{F \cap \operatorname{Rat}(\varphi)}$ is post-fixed point of $T_{\varphi}\left(G_{F \cap \operatorname{Rat}(\varphi)} \subseteq T_{\varphi}\left(G_{F \cap \operatorname{Rat}(\varphi)}\right)\right)$.
Let $w^{\prime} \in F \cap \boldsymbol{\operatorname { R a t }}(\varphi)$ and let $i \in\{1, \ldots, n\}$.
Since $w^{\prime} \in \boldsymbol{\operatorname { R a t }}(\varphi), \varphi_{i}\left(\sigma_{i}\left(w^{\prime}\right), H_{i},\left(G_{R_{i}(w)}\right)_{-i}\right)$ holds.
F is evident, so $R_{i}\left(w^{\prime}\right) \subseteq F$. We also have $R_{i}\left(w^{\prime}\right) \subseteq \boldsymbol{\operatorname { R a t }}(\varphi)$.
Hence, $R_{i}\left(w^{\prime}\right) \subseteq F \cap \operatorname{Rat}(\varphi)$.
This implies $\left(G_{R_{i}\left(w^{\prime}\right)}\right) \subseteq\left(G_{F \cap \operatorname{Rat}(\varphi)}\right)_{-i}$, and so by monotonicity of φ_{i}, $\varphi_{i}\left(s_{i}, H_{i},\left(G_{F \cap \operatorname{Rat}(\varphi)}\right)_{-i}\right)$ holds.

This means $G_{F \cap \operatorname{Rat}(\varphi)} \subseteq T_{\varphi}\left(G_{F \cap \operatorname{Rat}(\varphi)}\right)$

$$
\operatorname{sd}_{i}\left(s_{i}, G_{i}, G_{-i}\right) \text { is } \neg \exists s_{i}^{\prime} \in G_{i}, \forall s_{-i} \in G_{-i} u_{i}\left(s_{i}^{\prime}, s_{-i}\right)>u_{i}\left(s_{i}, s_{-i}\right)
$$

$$
\operatorname{sd}_{i}\left(s_{i}, G_{i}, G_{-i}\right) \text { is } \neg \exists s_{i}^{\prime} \in G_{i}, \forall s_{-i} \in G_{-i} u_{i}\left(s_{i}^{\prime}, s_{-i}\right)>u_{i}\left(s_{i}, s_{-i}\right)
$$

$$
b r_{i}\left(s_{i}, G_{i}, G_{-i}\right) \text { is } \exists \mu_{i} \in \mathcal{B}_{i}\left(G_{-i}\right) \forall s_{i}^{\prime} \in G_{i}, U_{i}\left(s_{i}, \mu_{i}\right) \geq U_{i}\left(s_{i}^{\prime}, \mu_{i}\right)
$$

$$
\operatorname{sd}_{i}\left(s_{i}, G_{i}, G_{-i}\right) \text { is } \neg \exists s_{i}^{\prime} \in G_{i}, \forall s_{-i} \in G_{-i} u_{i}\left(s_{i}^{\prime}, s_{-i}\right)>u_{i}\left(s_{i}, s_{-i}\right)
$$

$b r_{i}\left(s_{i}, G_{i}, G_{-i}\right)$ is $\exists \mu_{i} \in \mathcal{B}_{i}\left(G_{-i}\right) \forall s_{i}^{\prime} \in G_{i}, U_{i}\left(s_{i}, \mu_{i}\right) \geq U_{i}\left(s_{i}^{\prime}, \mu_{i}\right)$.
$U_{\varphi}(G)=G^{\prime}$ where $G_{i}^{\prime}=\left\{s_{i} \in G_{i} \mid \varphi_{i}\left(s_{i}, G_{i}, G_{-i}\right)\right\}$.

$$
\operatorname{sd}_{i}\left(s_{i}, G_{i}, G_{-i}\right) \text { is } \neg \exists s_{i}^{\prime} \in G_{i}, \forall s_{-i} \in G_{-i} u_{i}\left(s_{i}^{\prime}, s_{-i}\right)>u_{i}\left(s_{i}, s_{-i}\right)
$$

$b r_{i}\left(s_{i}, G_{i}, G_{-i}\right)$ is $\exists \mu_{i} \in \mathcal{B}_{i}\left(G_{-i}\right) \forall s_{i}^{\prime} \in G_{i}, U_{i}\left(s_{i}, \mu_{i}\right) \geq U_{i}\left(s_{i}^{\prime}, \mu_{i}\right)$.
$U_{\varphi}(G)=G^{\prime}$ where $G_{i}^{\prime}=\left\{s_{i} \in G_{i} \mid \varphi_{i}\left(s_{i}, G_{i}, G_{-i}\right)\right\}$.

Note: U_{φ} is not monotonic.

Corollary. For all belief models, $G_{\operatorname{Rat}(b r) \cap \square^{*} \operatorname{Rat}(b r)} \subseteq U_{s d}^{\infty}$. For all G, we have

$$
\begin{aligned}
& T_{b r}(G) \subseteq T_{s d}(G) \\
& T_{s d}(G) \subseteq U_{s d}(G)
\end{aligned}
$$

Then, $T_{s d}^{\infty} \subseteq U_{s d}^{\infty}$.

Corollary. For all belief models, $G_{\operatorname{Rat}(b r) \cap \square^{*} \operatorname{Rat}(b r)} \subseteq U_{s d}^{\infty}$. For all G, we have

$$
\begin{aligned}
& T_{b r}(G) \subseteq T_{s d}(G) \\
& T_{s d}(G) \subseteq U_{s d}(G)
\end{aligned}
$$

Then, $T_{s d}^{\infty} \subseteq U_{s d}^{\infty}$.

Fact. Consider two operators T_{1}, T_{2} on (D, \subseteq) such that,

- for all $G, T_{1}(G) \subseteq T_{2}(G)$
- T_{1} is monotonic
- T_{2} is contracting

Then, $T_{1}^{\infty} \subseteq T_{2}^{\infty}$.

This analysis does not work for weak dominance...

Rationality

Let $G=\left\langle N,\left\{S_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right\rangle$ be a strategic game and $\mathcal{T}=\left\langle\left\{T_{i}\right\}_{i \in N},\left\{\lambda_{i}\right\}_{i \in N}, S\right\rangle$ a type space for G.

For each $t_{i} \in T_{i}$, we can define a probability measure $p_{t_{i}} \in \Delta\left(S_{-i}\right)$:

$$
p_{t_{i}}\left(s_{-i}\right)=\sum_{t_{-i} \in T_{-i}} \lambda_{i}\left(t_{i}\right)\left(s_{-i}, t_{-i}\right)
$$

Rationality and common belief of rationality (RCBR) in the matrix

IESDS

		2		
		I	c	r
1	t	3, 3	1,1	0, 0
	m	1,1	3,3	1,0
	m	0, 4	0, 0	4, 0

IESDS

		2		
		l	c	
r				
	t	3,3	1,1	

			I	c
\longmapsto	1	t	3, 3	1, 1
		m	1,1	3, 3
		b	0, 4	0, 0

IESDS

1's types

		I	c	r
$\lambda_{1}\left(t_{2}\right)$	s_{1}	0	0.5	0
	S_{2}	0	0	0.5
	s_{3}	0	0	0

2's types

		t	m	b
	t_{1}	0.5	0	0
	t_{2}	0	0	0.5

		2		
		l	c	
	r			
t	3,3	1,1	0,0	
m	1,1	3,3	1,0	
b	0,4	0,0	4,0	

$\lambda_{2}\left(s_{3}\right)$		t	m	b
	t_{1}	0.5	0	0
	t_{2}	0	0	0.5

	t	m	b	
$\lambda_{2}\left(s_{3}\right)$	t_{1}	0.5	0	0
	t_{2}	0	0	0.5

- I and c are rational for both s_{1} and s_{2}.

	t	m	b	
$\lambda_{2}\left(s_{3}\right)$	t_{1}	0.5	0	0
	t_{2}	0	0	0.5

- I and c are rational for both s_{1} and s_{2}.

		2		
		I	C	r
1	t	3, 3	1,1	0,0
	m	1,1	3, 3	1, 0
	b	0,4	0, 0	4,0

		t	m	b			t	m	b	
	t_{1}	0.5	0.5	0		t_{1}	0.25	0.25	0	
	t_{2}	0	0	0		t_{2}	0.25	0.25	0	

$\lambda_{2}\left(s_{3}\right)$		t	m	b
	t_{1}	0.5	0	0
	t_{2}	0	0	0.5

- I and c are rational for both s_{1} and s_{2}.
$-I$ is the only rational action for s_{3}.

		2		
	l	c	r	
1	t	3,3	1,1	

	t	m	b	
$\lambda_{2}\left(s_{3}\right)$	t_{1}	0.5	0	0
	t_{2}	0	0	0.5

- I and c are rational for both s_{1} and s_{2}.
- l is the only rational action for s_{3}.
- Whatever her type, it is never rational to play r for 2.

		2		
		I	c	r
1	t	3, 3	1, 1	0, 0
	m	1,1	3, 3	1,0
	b	0, 4	0, 0	4, 0

		1	c	r
(${ }_{2}$)	s_{1}	0	0.5	0
	s_{2}	0	0	0.5
	s_{3}	0	0	0

- t and m are rational for t_{1}.

		1	c	r
(${ }_{2}$)	s_{1}	0	0.5	0
	s_{2}	0	0	0.5
	s_{3}	0	0	0

- t and m are rational for t_{1}.

		I	c	r
	$\lambda_{1}\left(t_{1}\right)$	s_{1}	0.5	0.5
	0			
	s_{2}	0	0	0
	s_{2}	0	0	0

- t and m are rational for t_{1}.
- m and b are rational for t_{2}.

$\lambda_{2}\left(s_{3}\right)$		t	m	b
	t_{1}	0.5	0	0
	t_{2}	0	0	0.5

$\lambda_{2}\left(s_{3}\right)$		t	m	b
	t_{1}	0.5	0	0
	t_{2}	0	0	0.5

- All of 2's types believe that 1 is rational.

		1	c	r
$\lambda_{1}\left(t_{2}\right)$	s_{1}	0	0.5	0
	s_{2}	0	0	0.5
	s_{3}	0	0	0

		I	C	r
$\lambda_{1}\left(t_{1}\right)$	s_{1}	0.5	0.5	0
	S_{2}	0	0	0
	s_{3}	0	0	0

- Type t_{1} of 1 believes that 2 is rational.

- Type t_{1} of 1 believes that 2 is rational.
- But type t_{2} doesn't! ($1 / 2$ probability that 2 is playing r.)

	t	m	b	
	$\lambda_{2}\left(s_{3}\right)$	t_{1}	0.5	0
		0		
	t_{2}	0	0	0.5

- Only type s_{1} of 2 believes that 1 is rational and that 1 believes that 2 is also rational.

	I	c	r	
$\lambda_{1}\left(t_{1}\right)$	s_{1}	0.5	0.5	0
	s_{2}	0	0	0
	s_{2}	0	0	0

- Type t_{1} of 1 believes that 2 is rational and that 2 believes that 1 believes that 2 is rational.

		2		
		l	c	
	r			
1	t	3,3	1,1	

		I	c	r
$\lambda_{1}\left(t_{1}\right)$	s_{1}	0.5	0.5	0
	s_{2}	0	0	0
	s_{3}	0	0	0

$\lambda_{2}\left(s_{1}\right)$| | t | m | b |
| :---: | :---: | :---: | :---: |
| | t_{1} | 0.5 | 0.5 |

		I	c	r
$\lambda_{1}\left(t_{1}\right)$	s_{1}	0.5	0.5	0
	S_{2}	0	0	0
	s_{3}	0	0	0

		t	m	b
$\lambda_{2}\left(s_{1}\right)$	t_{1}	0.5	0.5	0
	t_{2}	0	0	0

- No further iteration of mutual belief in rationality eliminate some types or strategies.

		I	c	r
$\lambda_{1}\left(t_{1}\right)$	s_{1}	0.5	0.5	0
	s_{2}	0	0	0
	s_{3}	0	0	0

		t	m	b
$\lambda_{2}\left(s_{1}\right)$	t_{1}	0.5	0.5	0
	t_{2}	0	0	0

- No further iteration of mutual belief in rationality eliminate some types or strategies.
- So at all the states in $\left\{\left(t_{1}, s_{1}\right)\right\} \times\{t, m\} \times\{I, c\}$ we have rationality and common belief in rationality.

		I	c	r
$\lambda_{1}\left(t_{1}\right)$	s_{1}	0.5	0.5	0
	s_{2}	0	0	0
	s_{3}	0	0	0

		t	m	b
$\lambda_{2}\left(s_{1}\right)$	t_{1}	0.5	0.5	0
	t_{2}	0	0	0

- No further iteration of mutual belief in rationality eliminate some types or strategies.
- So at all the states in $\left\{\left(t_{1}, s_{1}\right)\right\} \times\{t, m\} \times\{I, c\}$ we have rationality and common belief in rationality.
- But observe that $\{t, m\} \times\{I, c\}$ is precisely the set of profiles that survive IESDS.

RCBR

Let $G=\left\langle N,\left\{S_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right\rangle$ be a strategic game and $\mathcal{T}=\left\langle\left\{T_{i}\right\}_{i \in N},\left\{\lambda_{i}\right\}_{i \in N}, S\right\rangle$ a type space for G.

The set of states (pairs of strategy profiles and type profiles) where player i chooses rationally is:

$$
\text { Rat }_{i}:=\left\{\left(s_{i}, t_{i}\right) \mid s_{i} \text { is a best response to } p_{t_{i}}\right\}
$$

The event that all players are rational is Rat $=\left\{(s, t) \mid\right.$ for all $\left.i,\left(s_{i}, t_{i}\right) \in \operatorname{Rat}_{i}\right\}$.

RCBR

A type $t_{i} \in T_{i}$ believes an event $E_{-i} \subseteq S_{-i} \times T_{-i}$ if $\lambda_{i}\left(t_{i}\right)\left(E_{-i}\right)=1$; let $B_{i}\left(E_{-i}\right)=\left\{\left(s_{i}, t_{i}\right) \mid t_{i}\right.$ believes $\left.E_{-i}\right\}$.
$R_{i}^{1}=$ Rat $_{i}$,
for $m \geq 1, R_{i}^{m+1}=R_{i}^{m} \cap B_{i}\left(R_{-i}^{m}\right)$

$$
R C B R_{i}=\bigcap_{m \geq 1} R_{i}^{m} \text { and } R C B R=\Pi_{i \in N} R C B R_{i}
$$

BRS

Let $S_{i}^{0}=S_{i}$ for all $i \in N$. For $m \geq 0$, let S_{i}^{m+1} be the set of strategies that are best replies to conjectures $\mu_{-i} \in \Delta S_{-i}^{m}$. The set $S_{i}^{\infty}=\bigcap_{m \geq 0} S_{i}^{m}$ is the set of (correlated) rationalizable strategies of Player i.

A set $B=\Pi_{i \in N} B_{i} \subseteq S=\Pi_{i \in N} S_{i}$ is a best-reply set (or BRS) if, for all players $i \in N$, every $s_{i} \in B_{i}$ is a best reply to a belief $\mu_{-i} \in \Delta B_{-i}$. B is a full BRS if, for every $s_{i} \in B_{i}$, there is a belief $\mu_{-i} \in \Delta B_{-i}$ that rationalizes s_{i} and such that all best replies to μ_{-i} are also in B_{i}.

Theorem (Brandenburger and Dekel, Tan and da Costa Werlang) Fix a game $G=\left\langle N,\left\{S_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right\rangle$.

1. In any type structure $\left\langle\left\{T_{i}\right\}_{i \in N},\left\{\lambda_{i}\right\}_{i \in N}, S\right\rangle$ for $G, \operatorname{proj}_{S} R C B R$ is a full BRS.
2. In any complete type structure $\left\langle\left\{T_{i}\right\}_{i \in N},\left\{\lambda_{i}\right\}_{i \in N}, S\right\rangle$ for G, $\operatorname{proj}_{S} R C B R=S^{\infty}$.
3. For every full $B R S B$, there exists a finite type structure $\left\langle\left\{T_{i}\right\}_{i \in N},\left\{\lambda_{i}\right\}_{i \in N}, S\right\rangle$ for G such that $\operatorname{proj}_{S} R C B R=B$.

Theorem (Brandenburger and Dekel, Tan and da Costa Werlang) Fix a game $G=\left\langle N,\left\{S_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right\rangle$.

1. In any type structure $\left\langle\left\{T_{i}\right\}_{i \in N},\left\{\lambda_{i}\right\}_{i \in N}, S\right\rangle$ for $G, \operatorname{proj}_{S} R C B R$ is a full BRS.
2. In any complete type structure $\left\langle\left\{T_{i}\right\}_{i \in N},\left\{\lambda_{i}\right\}_{i \in N}, S\right\rangle$ for G, $\operatorname{proj}_{S} R C B R=S^{\infty}$.
3. For every full $B R S B$, there exists a finite type structure $\left\langle\left\{T_{i}\right\}_{i \in N},\left\{\lambda_{i}\right\}_{i \in N}, S\right\rangle$ for G such that $\operatorname{proj}_{S} R C B R=B$.

		2		
		I	C	r
1	t	4,4	1,1	0,0
	m	1,1	5,5	0,0
	d	0,1	0,1	6,0

	b
l	1
c	0
r	0

	a
t	1
m	0
d	0

A. Friedenberg and J. Kiesler. Iterated Dominance Revisited. Working paper, 2011.

		2		
	l	c	r	
1	t	4,4	1,1	

	b
l	1
c	0
r	0

	a
t	1
m	0
d	0

- The projection of $R C B R$ is $\{(t, I)\}$
A. Friedenberg and J. Kiesler. Iterated Dominance Revisited. Working paper, 2011.

		2		
	l	c	r	
1	t	4,4	1,1	

	b
l	1
c	0
r	0

	a
t	1
m	0
d	0

- The projection of $R C B R$ is $\{(t, l)\}$
- This is not the entire ISDS set
A. Friedenberg and J. Kiesler. Iterated Dominance Revisited. Working paper, 2011.

	b
l	1
c	0
r	0

	a
t	1
m	0
d	0

- The projection of $R C B R$ is $\{(t, l)\}$
- This is not the entire ISDS set
- "Game independent" conditions and rich type structures
A. Friedenberg and J. Kiesler. Iterated Dominance Revisited. Working paper, 2011.

