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This paper presents a new iterative procedure for solving finite non-cooperative games, the
reasoning-based expected utility procedure (RBEU), and compares this with existing iterative
procedures. RBEU deletes more strategies than iterated deletion of strictly dominated
strategies, while avoiding the conceptual problems associated with iterated deletion
of weakly dominated strategies. It uses a sequence of “accumulation” and “deletion”
operations to categorise strategies as permissible and impermissible; strategies may remain
uncategorised when the procedure halts. RBEU and related “categorisation procedures” can
be interpreted as tracking successive steps in players’ own reasoning.
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1. Introduction

In this paper, we introduce a new iterative solution procedure for non-cooperative games, called the reasoning-based
expected utility (RBEU) procedure. In general, the RBEU procedure deletes more strategies than iterative deletion of strictly
dominated strategies (IDSDS), while not coinciding with any of the family of procedures based on iterated deletion of
weakly dominated strategies (IDWDS).

The puzzling features of IDWDS are well known. One difficulty is the order-sensitivity problem: the conclusions that can
be derived by IDWDS are sensitive to the order in which deletions are made. Another, closely related, difficulty is the
undercutting problem. IDWDS can delete a weakly dominated strategy for some player at one stage of the procedure, only
for it to transpire, when further stages of deletion have been undertaken, that that strategy is no longer weakly dominated
against the non-deleted strategies of other players. In such a case, the further stages of deletion seem to undermine the
natural rationale for the earlier deletion.

The RBEU procedure is not vulnerable to any analogous problems. Many of its distinctive properties flow from the fact
that, at each stage, it has an operation of accumulation of strategies, as well as the more familiar one of deletion. At each
stage, deletion and accumulation are sensitive to previous accumulations, as well as to previous deletions. The essential
idea is that, at each stage, previously-deleted strategies are assumed to have zero probability, and previously-accumulated
strategies are assumed to have strictly positive probability. If a strategy has not yet been deleted or accumulated, no restric-
tions are imposed on its probability. A strategy is accumulated if, given the assumptions applicable at the relevant stage, it
can be shown to maximise expected utility; it is deleted if, given the same assumptions, it can be shown not to maximise
expected utility. Because RBEU has these two operations, it induces a trinary partition of each player’s strategy set at each
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stage, corresponding to the fact that not being able to establish the falsity of a proposition is not the same thing as being
able to establish its truth.

In using the term “reasoning-based” to describe this procedure, we are signalling a particular orientation towards game
theory. Many branches of game theory start from the pre-theoretic idea that players have mutual understanding of each
other’s rationality, and then proceed to represent and develop this idea in different ways, such as the various formal concepts
of common knowledge. More specifically, game theory uses two different types of solution concept: equilibrium concepts
and iterative procedures. Each type can be motivated in terms of mutual understanding of rationality, but the nature of the
motivation can be quite different in the two cases.

For a given game, an equilibrium solution concept defines a set of equilibria, each of which specifies a particular con-
figuration of players’ strategy choices and/or beliefs. When such a solution concept is interpreted as embodying mutual
understanding of rationality, the implicit claim is that each equilibrium could be common knowledge among the players,
consistently with the players’ rationality also being common knowledge. A game may have more than one equilibrium, in
which case the equilibrium approach does not explain how players come to know what other players choose or believe.
One way of providing conceptual foundations for an equilibrium solution concept is to show that the relevant equilibrium
properties are implied by an epistemic model in which some form of mutual understanding of rationality is represented ex-
plicitly; Aumann’s (1987) derivation of correlated equilibrium is a classic example. Within the equilibrium-based approach,
iterative procedures are sometimes used as devices that help to narrow or assist in a search for particular types of equilib-
rium. One example is the long-established use of IDSDS to narrow a search for Nash equilibria, exploiting the fact that only
strategies which survive IDSDS can have strictly positive probability in any Nash equilibrium.1 When iterative procedures
are used in relation to some kinds of epistemically-grounded solution concepts, the successive stages of strategy deletion
may correspond to different levels of belief in a lexicographic probability system, as in the approach to IDWDS analysed by
Stahl (1995), Brandenburger et al. (2008) and Asheim and Perea (2009).

However, an alternative interpretation of iterative procedures leads to a different type of motivation. The successive
stages of an iterative procedure can be interpreted as tracking successive steps of reasoning that the players can perform;
“rationality” is then interpreted as a property of the reasoning that players use, and which the procedure tracks. This ap-
proach does not merely purport to identify solutions that are consistent with rationality; it also explains how players can
know that the solution is what it is. On this understanding, an iterative procedure is not an adjunct to a solution concept
that has an independent rationalisation; rather it constitutes in summary form the rationalisation for the solution it gener-
ates. This approach is suggested by the understanding of “common knowledge” of rationality formulated by Lewis (1969),
in which there is some mode of reasoning that is shared by the players and can be tracked by an iterative procedure.2 It is
in this sense that the RBEU procedure is “reasoning-based”.

If one thinks of iterative procedures in this way, the order-sensitivity and undercutting problems of IDWDS are troubling.
It is difficult to see how two equally valid paths of reasoning from a given set of (mutually consistent) premises, differing
only in the order in which inferences were made, could produce mutually inconsistent conclusions. Similarly, it is difficult
to see how a conclusion that is reached by valid reasoning from given premises could be undercut by other conclusions
derived from the same premises. Thus, intuitively, one might expect that a procedure that tracked players’ reasoning would
not be subject to the order-sensitivity and undercutting problems. We will argue that each stage of the RBEU procedure can
be interpreted as a step of reasoning which each player can make, and that the possibility of this interpretation is licensed
by attractive properties of the procedure. Of course, the formal structure of the RBEU procedure is not dependent on this
interpretation; we do not discount the possibility that it can also be motivated in other ways.

The remainder of the paper is structured as follows: Section 2 sets up a general framework in which iterative “cate-
gorisation procedures”, capable of being interpreted as tracking players’ reasoning, can be formulated. Section 3 uses this
framework to define the RBEU procedure. Section 4 compares the RBEU procedure to IDSDS and IDWDS, and to related pro-
cedures in the literature. Section 5 concludes with brief reflections on other applications of the concept of a categorisation
procedure.

2. Framework

We consider the class G of finite, normal-form games of complete information, interpreted as one-shot games. Our
analysis applies to every such game but, to avoid clutter, we suppress clauses of the form “for all games in G” except when
stating formal results, and proceed initially by fixing the game. The game is defined by a finite set N = {1, . . . ,n} of players,
with typical element i and n � 2; for each player i, a finite, non-empty set of (pure) strategies Si , with typical element si ;

1 More recently, Asheim and Dufwenberg (2003) show how an iterative procedure (which we discuss in Section 4) can be used to identify what they call
“fully permissible sets”. Such sets provide an equilibrium concept in the sense that a game may have more than one profile of fully permissible sets. Asheim
and Dufwenberg’s procedure identifies exactly all the fully permissible sets. Another way in which an iterative procedure might assist an equilibrium search
is illustrated by the results of Brandenburger et al. (2008). They show that the strategies which survive (maximal) IDWDS must comprise a “self-admissible
set”. In this case, the iterative procedure always identifies exactly one self-admissible set, but the game may still have others.

2 Cubitt and Sugden (2003) describe how Lewis’s conception of common knowledge, which has the commonality of certain modes of reasoning as its
central ingredient, differs from those which are now more familiar in the game theory literature. Cubitt and Sugden (2008) set out formal foundations for
a Lewisian approach but here we focus, not on foundations, but on solution concepts.
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and, for each profile of strategies s = (s1, . . . , sn), a profile u(s) = (u1[s], . . . , un[s]) of finite utilities. The sets S1 × · · · × Sn

and S1 × · · · × Si−1 × Si+1 × · · · × Sn are denoted by S and S−i , respectively. We impose that, for all i, j ∈ N, Si ∩ S j = ∅.
This condition will allow us to use a conveniently compact notation. It has no substantive significance, but merely imposes
a labelling convention that the strategies available to different players are distinguished by player indices, if nothing else.3

Our fundamental building block is the following formal object: For any player i, an ordered pair 〈S+
i , S−

i 〉 of subsets
of Si is a categorisation of Si if it satisfies the following conditions4: (i) S+

i and S−
i are disjoint; (ii) S−

i ⊂ Si ; and (iii) if
Si\S−

i = {si} for any si ∈ Si , then S+
i = {si}. The set of categorisations of Si is denoted Φ(Si). We use two interpretations,

on each of which a categorisation of Si represents the substantive content of some statement about player i’s strategies.
On one interpretation, the statement asserts of the strategies in S+

i that they are rationally permissible for i and of the
strategies in S−

i that they are not rationally permissible. On the other interpretation, the statement asserts of the strategies
in S+

i that i might possibly play them and of the strategies in S−
i that i will not play them.

A categorisation of Si defines a trinary partition of Si , whose elements are the positive component S+
i , the negative

component S−
i , and the set Si\(S+

i ∪ S−
i ) containing the strategies not classified as elements of either component. The use

of trinary rather than binary partitions is a distinctive feature of our framework, which will be important for the RBEU
procedure by allowing us to define an operation of “accumulation” that is the counterpart of “deletion”. By permitting
categorisations in which Si\(S+

i ∪ S−
i ) is non-empty, we are able to represent statements that do not refer to all strategies.

The null categorisation 〈∅,∅〉 corresponds to a statement with no substantive content—that is, which says nothing about the
permissibility or impermissibility (resp. possibility or impossibility) of strategies.

Consider any non-empty set N ′ ⊆ N of players. For each i ∈ N ′ , let 〈S+
i , S−

i 〉 be any categorisation of Si . We de-
fine a “union” relation

⋃∗ between such categorisations such that
⋃∗

i∈N ′ 〈S+
i , S−

i 〉 ≡ 〈⋃i∈N ′ S+
i ,

⋃
i∈N ′ S−

i 〉. Each such
⋃∗

i∈N ′ 〈S+
i , S−

i 〉 is a categorisation of the set
⋃

i∈N ′ Si . The set of all categorisations of the latter set is denoted Φ(
⋃

i∈N ′ Si).5

We use S as a shorthand notation for
⋃

i∈N Si ; the positive and negative components of categorisations in Φ(S) will
typically be denoted S

+ and S
− . Similarly, we use S−i as a shorthand for

⋃
i∈N\{i} Si ; the positive and negative components

of categorisations in Φ(S−i) will typically be denoted S
+
−i and S

−
−i . We will sometimes also use an even briefer notation

whereby C, C ′, and so on, denote particular categorisations of S; C−i , C ′
−i , and so on, particular categorisations of S−i ; and

Ci , C ′
i , and so on, particular categorisations of Si .

Consider any categorisations C ′
i = 〈S+′

i , S−′
i 〉, C ′′

i = 〈S+′′
i , S−′′

i 〉 in Φ(Si), for some player i. We define a binary relation
⊇∗ (read as has weakly more content than) between such categorisations such that C ′′

i ⊇∗ C ′
i if and only if S+′′

i ⊇ S+′
i and

S−′′
i ⊇ S−′

i . If, in addition, either S+′′
i ⊃ S+′

i or S−′′
i ⊃ S−′

i holds, we will say that C ′′
i has strictly more content than C ′

i ,
denoted C ′′

i ⊃∗ C ′
i . This proposition can be interpreted as saying that the statement represented by C ′′

i asserts everything
that is asserted by the statement represented by C ′

i and more besides. This notation is extended in an obvious way to
categorisations in Φ(S) and Φ(S−i).6

We define a categorisation function for player i as a function f i : Φ(S−i) → Φ(Si) with the following Monotonicity prop-
erty: for all C ′

−i , C ′′
−i ∈ Φ(S−i), if C ′′

−i ⊃∗ C ′
−i then f i(C ′′

−i) ⊇∗ f i(C ′
−i).

In using this concept, we will interpret C−i as attributing possibility and impossibility to strategies available to players
other than i, and f i(C−i) as attributing permissibility and impermissibility to strategies available to i. The function itself
will be interpreted as encoding a conception of practical rationality for player i—that is, a mode of reasoning which arrives
at conclusions about what is rationally permissible and impermissible for i, conditional on propositions about what other
players might do. For example, in specifying our RBEU procedure we will define each f i to encode the principle that a
strategy is permissible (resp. impermissible) for i if it can be shown to be (resp. shown not to be) expected-utility max-
imising, given the statement about possibility of strategies expressed by C−i . Monotonicity corresponds to the requirement
on rational reasoning that any conclusions that can be obtained from a given set of premises can also be obtained from any
strictly stronger set of premises.7

To simplify subsequent definitions, we summarise the content of a given profile f = ( f1, . . . , fn) of categorisation func-
tions as a single function ζ :Φ(S) → Φ(S), constructed in the obvious way as follows: for each C = 〈S+,S

−〉 ∈ Φ(S),
ζ(C) = ⋃∗

i∈N 〈S+′
i , S−′

i 〉 where, for each player i, S+′
i and S−′

i are, respectively, the positive and negative components of
f i(C−i), where C−i = 〈S+\Si,S

−\Si〉. Each profile f is summarised by a distinct ζ . A function from Φ(S) to Φ(S) is an
aggregate categorisation function if it summarises some profile of categorisation functions. (Note that not all functions from
Φ(S) to Φ(S) have this property.) As we will always attribute the same conception of practical rationality to all players, we
will say that this conception is embedded in ζ .

3 Player indices are not always necessary. To avoid unnecessary subscripts, we use the convention that, for two-player games, first, second, . . . , are
strategies for player 1 and left, centre, right are strategies for player 2.

4 Throughout, we use ⊂ to denote ‘is a strict subset of ’.
5 This notation uses unions of sets of strategies, some of which “belong” to one player and some to another. Recall that our labelling convention enables

us, as analysts, to keep track of which strategies belong to whom.
6 For example, consider categorisations C ′ = 〈S+′,S

−′〉, C ′′ = 〈S+′′,S
−′′〉 in Φ(S). In this case, C ′′ ⊇∗ C ′ if S

+′′ ⊇ S
−′ and S

+′′ ⊇ S
−′ .

7 Monotonicity is not the only formal restriction on categorisation functions that might be justified by appeal to structural properties of reasoning; but
it is sufficient for our purposes.
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We can now define the central concept of this section. For any aggregate categorisation function ζ , the categorisation
procedure is defined by the following pair of instructions, which generate a sequence of categorisations C(k) ≡ 〈S+(k),S

−(k)〉
of S, for successive stages k ∈ {0,1,2, . . .}, inductively:

(i) Initiation rule. Set C(0) = 〈∅,∅〉.
(ii) Continuation rule. For all k > 0, set C(k) = ζ [C(k − 1)].

We will say that the procedure halts at the lowest value of k′ for which C(k′) = C(k′ − 1); this value of k′ will be de-
noted by k∗ . (Since C(k) = C(k∗) for all k > k∗ , further application of the Continuation rule is uninformative.) C(k∗) is the
categorisation solution of the game, relative to ζ .

We interpret a categorisation procedure as tracking a sequence of phases of reasoning, based on the conception of
practical rationality embedded in ζ . The first phase starts with no substantive premises and reaches conclusions about
the permissibility or impermissibility of strategies, represented by the categorisation C(1). These conclusions are uncon-
ditional implications of the conception of practical rationality. For the second phase, the strategies whose permissibility
(resp. impermissibility) was established in the first phase are taken as possible (resp. as impossible). These transitions from
(im)permissibility to (im)possibility can be interpreted as tracking inferences that players can make, given that they attribute
rationality to one another. Further conclusions about permissibility and impermissibility, captured by the categorisation C(2),
can now be drawn. And so on. In this way, the categorisation procedure tracks the reasoning of all players.

To appreciate the properties of categorisation procedures, it is helpful to begin from the following result (proved in
Appendix A):

Proposition 1. Consider any game in G and let ζ be any aggregate categorisation function for the game. The categorisation procedure
for ζ has the following properties:

(a) For all k ∈ {1,2, . . .}, C(k) ⊇∗ C(k − 1).
(b) The procedure halts, defining a unique categorisation solution relative to ζ .

Part (a) of Proposition 1 shows that, for any ζ , the corresponding categorisation procedure has the reaffirmation property:
that is, it generates, at each stage k > 0, a categorisation with weakly more content than the one generated at the previous
stage. This property, the proof of which follows from Monotonicity by a generalisation of standard arguments, is used to
prove part (b), which guarantees the existence of a categorisation solution for any ζ . But part (a) is also significant in its
own right.

One implication of the reaffirmation property is that a categorisation procedure may be interpreted as constructing
the resulting solution by progressively accumulating and deleting strategies; once made, accumulations and deletions are
never reversed. In this respect, a categorisation procedure is analogous with IDSDS and IDWDS, but with an operation
of accumulation as well as one of deletion. Formally, for each k > 0, we will say that strategies in S

+(k)\S
+(k − 1) are

accumulated at stage k, and that strategies in S
−(k)\S

−(k − 1) are deleted at stage k. The reaffirmation property implies that
S

+(k∗) (resp. S
−(k∗)) is the set of strategies that are accumulated (resp. deleted) at any stage.

However, the reaffirmation property says more than that accumulations and deletions are never in fact reversed. It also
says that no reversal of a previous accumulation or deletion would ever be justified, where “justification” is defined in
terms of the conception of practical rationality embedded in the aggregate categorisation function ζ .8 As IDWDS illustrates,
the absence of actual reversals is not sufficient for the absence of the undercutting problem. Rather, that problem arises
when an operation made at some stage in an iterative procedure has its natural justification undermined by subsequent
operations.9 One of the advantages of our approach is that “justification” is given a formal representation by the function ζ .
Given this interpretation, the reaffirmation property is equivalent to the absence of an undercutting problem.10

Categorisation procedures are also immune to the order-sensitivity problem, as we now show. For the purposes of this
analysis, we introduce the concept of a “potentially negligent” variant of a categorisation procedure. The idea is that, where
the categorisation procedure specifies a set of deletions and accumulations at a given stage k, a potentially negligent variant

8 This marks a difference between the reaffirmation property in our framework and apparently analogous properties of some other iterated deletion
procedures. In defining a stage in such a procedure, one may (as Fudenberg and Tirole, 1991, pp. 45–46 do in formulating IDSDS) specify the set of
“deleted” strategies to include automatically all strategies deleted at earlier stages. Our definition of ζ does not permit such manoeuvres. In line with our
view of practical rationality as conditioning statements about the permissibility (or otherwise) of strategies for player i on statements about the possibility
(or otherwise) of strategies for players other than i, the domain of each f i is Φ(S−i), not Φ(S). As a result, the reaffirmation property has to be established,
since it has not been imposed directly. In fact, ζ(C) ⊇∗ C need not hold for all C . What the reaffirmation property shows is only that ζ(C) ⊇∗ C holds for
C ∈ {C(0), C(1), . . .}, i.e. along the path taken by the categorisation procedure.

9 For example, in IDWDS, the undercutting problem is that a strategy si that is weakly dominated (and so deleted) at some stage of the procedure may
cease to be weakly dominated against the strategies that survive later stages of deletion. The concern is not that si is actually reinstated by IDWDS but
rather that, if the later deletions are taken as indicating strategies that will not be played, it is not clear why it should not be.
10 Whether this result also guarantees immunity from the informal concern that “natural” justifications have been undermined turns on whether the

categorisation functions express “natural” justifications. We will argue in Section 3 that RBEU has a very natural decision–theoretic rationale but we do not
make that claim for every conceivable profile of categorisation functions.
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might make only some of them at that stage. This is analogous to what is often regarded as legitimate variation in the
specification of IDSDS and IDWDS. Suppose that, at some stage in a procedure of iterative deletion of dominated strategies,
two or more strategies are dominated. Must all these strategies be deleted simultaneously? Or should each deletion of a
single strategy count as a separate “stage”—and if so, which strategy should be deleted first? The order-sensitivity problem
of IDWDS is that which strategies ultimately survive the procedure can depend on how these specification questions are
answered. Thus, in our context, order-insensitivity can be represented as the requirement that all potentially negligent
variants of a categorisation procedure reach the same final output as the categorisation procedure itself.

Consider any game in G; and let ζ be any aggregate categorisation function for the game and CP(ζ ) be the categorisation
procedure for ζ . An iterative procedure IP(ζ ) is a potentially negligent variant of CP(ζ ) if it generates a sequence of categorisa-
tions C ′(k) of S for successive stages k ∈ {0,1,2, . . .} that satisfy (i) C ′(0) = 〈∅,∅〉; and, for all k > 0: (ii) ζ [C ′(k−1)] ⊇∗ C ′(k);
(iii) if ζ [C ′(k − 1)] ⊃∗ C ′(k − 1), then C ′(k) ⊃∗ C ′(k − 1); and (iv) if ζ [C ′(k − 1)] = C ′(k − 1), then C ′(k) = C ′(k − 1). IP(ζ )

halts at the lowest value of k′ for which C ′(k′) = C ′(k′ − 1); this value of k′ will be denoted k∗∗ .
For intuition, consider any stage k. Think of application of ζ to the previous categorisation C(k−1) as defining a maximal

set of “instructions” for the deletion and accumulation of strategies. In CP(ζ ), these instructions are fully carried out at
stage k; but in IP(ζ ), some instructions may be neglected. Condition (i) requires IP(ζ ) to begin with the null categorisation,
as CP(ζ ) does. Condition (ii) requires that, though IP(ζ ) may be negligent, it never deletes or accumulates a strategy at any
stage k unless it has been instructed to do so at that stage. Condition (iii) requires that, if the instructions at stage k are
to make some new deletions and/or accumulations (and not to undo any existing ones), then IP(ζ ) makes at least some of
these at stage k. Condition (iv) requires that, if the instructions at stage k are just to repeat the previous output, then IP(ζ )

does so, thereby halting.
The following result is proved in Appendix A:

Proposition 2. Consider any game in G and any aggregate categorisation function ζ for the game. Let CP(ζ ) be the categorisation
procedure for ζ and C(k∗) be the corresponding categorisation solution. Let IP(ζ ) be any potentially negligent variant of CP(ζ ) and
C ′(0), C ′(1), . . . , be the sequence of categorisations generated by IP(ζ ). Then:

(a) For all k ∈ {1,2, . . .}, C ′(k′) ⊇∗ C ′(k′ − 1).
(b) IP(ζ ) halts at some k∗∗ ∈ {1,2, . . .}.
(c) C ′(k∗∗) = C(k∗).

This proposition shows that for every potentially negligent variant of CP(ζ ), the following is true: it has the reaffirmation
property; it halts; and when it halts, the categorisation it has generated coincides with the categorisation solution generated
by CP(ζ ) itself.

3. The reasoning-based EU categorisation procedure

We are now able to define our RBEU procedure. As this is an instance of the concept of a categorisation procedure
introduced in Section 2, we have only to define an appropriate profile of categorisation functions for the players (which
will, in turn, define the function ζ ). We require, for each player i, a function that maps Φ(S−i) to Φ(Si); and, crucially,
which satisfies Monotonicity.

On our interpretation, specifying this function corresponds to specifying a conception of practical rationality, for each
player i. To do this, we need criteria of rational permissibility and impermissibility of i’s strategies, conditional on any
categorisation C−i of S−i . The approach we adopt is orthodox, in the sense of being based on expected utility maximisation.
We proceed in two steps. Intuitively, the first step defines a rule to indicate which probability distributions over S−i are
“allowable”, given a categorisation C−i of S−i . The second step defines a rule for assigning strategies to the positive and
negative components of a categorisation of Si , given a set of allowable probability distributions over S−i . To formalise these
concepts, we use �(S−i) to denote the set of probability distributions over S−i .

An allowability rule for player i associates a non-empty subset A(C−i) of �(S−i) with each categorisation C−i in Φ(S−i).
The reasoning-based allowability rule is defined by the requirement that a probability distribution is allowable (i.e. is in
A(C−i)) if and only if it satisfies the following two conditions11:

Positive sub-rule: Each strategy in the positive component of C−i has strictly positive marginal probability.
Negative sub-rule: Each strategy in the negative component of C−i has zero marginal probability.

The EU assignment rule for player i comprises the following pair of sub-rules for specifying S+
i (A) ⊆ Si and S−

i (A) ⊆ Si ,
conditional on any non-empty set A ⊆ �(S−i) of allowable probability distributions:

Positive sub-rule: S+
i (A) = {si ∈ Si | si is expected utility maximising for i, for every probability distribution in A}.

Negative sub-rule: S−
i (A) = {si ∈ Si | si is not expected utility maximising for i, for any probability distribution in A}.

11 For any categorisation C−i , the set of probability distributions satisfying these conditions is well defined and non-empty.
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This specification guarantees that, for any non-empty A ⊆ �(S−i), the ordered pair 〈S+
i (A), S−

i (A)〉 satisfies parts (i)–(iii) of
the definition of a categorisation of Si . Thus, the EU assignment rule for player i associates a categorisation of Si with each
non-empty set of allowable probability distributions over S−i .

The reasoning-based allowability rule is a particular function from Φ(S−i) to the set of non-empty subsets of �(S−i);
and the EU assignment rule is a particular function from the latter set to Φ(Si). Thus, the composition of these two functions
is a particular function f i :Φ(S−i) → Φ(Si). We call this function the reasoning-based expected utility (RBEU) categorisation
function for player i, anticipating the following result:

Proposition 3. Consider any game in G and any player i of the game. The composition fi of the reasoning-based allowability rule for
i and the EU assignment rule for i is a categorisation function for player i.

To prove this proposition, it is sufficient to establish that f i satisfies Monotonicity. That is, we must show that if some
categorisation C ′′

−i has strictly more content than another categorisation C ′
−i , then f i(C ′′

−i) has weakly more content than
f i(C ′

−i). To see that this is so, note that as the content of C−i increases, the reasoning-based allowability rule imposes
(strictly) tighter restrictions on the set A of allowable probability distributions. This makes it “easier” for a strategy to be
expected utility maximising for all allowable distributions (and so to be assigned to S+

i (A) by the EU assignment rule);
and also “easier” to be expected utility maximising for no such distributions (and so to be assigned to S−

i (A) by the EU
assignment rule).

For any game in G , the profile of RBEU categorisation functions is summarised by a unique aggregate categorisation
function. The RBEU procedure (henceforth RBEU) is the categorisation procedure for this aggregate categorisation function.
Since RBEU is a categorisation procedure, Proposition 1 applies to it. Thus, RBEU induces a unique categorisation solution,
the RBEU solution.

As an initial illustration, consider the following game:

Game 1

Player 2

left right

Player 1
first 1, 1 1, 1
second 0, 0 1, 0
third 2, 0 0, 0
fourth 0, 2 0, 0

For this game, RBEU runs as follows: C(0) = 〈∅,∅〉; C(1) = 〈{left}, {fourth}〉; C(2) = 〈{left, right}, {second, fourth}〉; C(3) =
C(2). Thus, the RBEU solution of the game is 〈{left, right}, {second, fourth}〉. In words, RBEU accumulates left and deletes
fourth at stage 1; then, at stage 2, accumulates right and deletes second; and then halts.

Game 1 illustrates several features of RBEU. First, RBEU can accumulate strategies as well as deleting them. Second,
accumulation and deletion both feed on the conclusions of prior stages; and each can feed on the other. It is the deletion of
fourth at stage 1 that allows the accumulation of right at stage 2; and it is the accumulation of left at stage 1 that allows the
deletion of second at stage 2. The fact that a subsequent deletion can be driven by an earlier accumulation shows that the
concept of accumulation has real bite in RBEU; it is not mere semantics. Third, the procedure can halt with some strategies
neither accumulated nor deleted. Thus, in general, the RBEU solution induces a trinary partition of strategies.

This implies that RBEU may distinguish between two classes of undeleted strategy: those accumulated (left and right in
the example) and those neither accumulated nor deleted (first and third). To say that a strategy has not been deleted is to
say that it is optimal for some beliefs that have not been definitely ruled out; to say that it has been accumulated is to
make the stronger statement that it is optimal for all such beliefs. Or, interpreting RBEU as tracking a process of reasoning:
to say that a strategy has not been deleted is to say that it has not been shown to be impermissible; to say that is has been
accumulated is to say that is has been shown to be permissible.

4. The RBEU procedure compared to others

In this section, we compare RBEU to existing iterative procedures, continuing to confine our attention to finite games.12

4.1. IDSDS

Since RBEU has the concept of accumulation while IDSDS does not, it is obvious that the two procedures do not coincide.
But we may usefully compare the deletions they make.

12 For discussion of IDSDS in infinite games, see Dufwenberg and Stegeman (2002) and Chen et al. (2007).
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It is already apparent that RBEU deletes some strategies—for example, second in Game 1—that IDSDS does not delete.
We now show that RBEU deletes every strategy that is deleted by IDSDS. For this purpose, it is convenient to describe

(maximal) IDSDS in terms of “allowable” probability distributions. Consider any game in G . IDSDS deletes strategies in a
series of stages k = 1,2, . . . . At each stage k > 1 of IDSDS, there is for each player i a set Di(k −1) ⊆ Si , containing strategies
for player i that have been deleted in previous stages. We set Di(0) = ∅. We define D−i(k − 1) ≡ ⋃

j∈N\{i} D j(k − 1) and
D(k − 1) ≡ ⋃

i∈N Di(k − 1). For each stage k � 1, and for each player i, let A[D−i(k − 1)] ⊆ �(S−i) be the set of probability
distributions over S−i which assign zero marginal probability to every element of D−i(k − 1). The deletion operation of
IDSDS can then be expressed as the rule that a strategy for player i (if not already deleted) is deleted at stage k if and only
if it is not expected utility maximising for any probability distribution in A[D−i(k − 1)].13 D(k) can then be defined as the
union of D(k − 1) and the set of strategies deleted at stage k. The procedure halts at the first k at which D(k) = D(k − 1).

This formulation shows that, as far as deletions are concerned, IDSDS and RBEU differ only in that, for given previous
deletions, RBEU imposes tighter restrictions on allowable beliefs at each stage k. (Both procedures require that previously
deleted strategies have zero probability, but RBEU imposes the additional condition that previously accumulated strategies
have strictly positive probability.) Thus, in general, RBEU makes it “easier” for a strategy to be expected utility maximising
for no allowable beliefs. Hence, every strategy that is deleted by IDSDS is also deleted by RBEU.

4.2. IDWDS

We now compare RBEU to IDWDS. We use the term “IDWDS” to refer to the family of iterative procedures in which
weakly dominated strategies are successively deleted. Because of the order-sensitivity problem, an IDWDS procedure is not
fully specified unless the order in which deletions are made is defined. The most common such specification is maximal
IDWDS—that is, at each stage, all strategies that are weakly dominated at that stage are deleted together. However, most of
the conclusions that we will derive in this sub-section apply to all forms of IDWDS. For the same reason as in discussion of
IDSDS, we focus on comparison of RBEU and IDWDS in terms of deletions.

We begin with an example in which, although RBEU and IDWDS delete the same strategies, they do so for different
reasons:

Game 2

Player 2

left right

Player 1
first 1, 1 0, 0
second 0, 0 0, 0

In this game, second and right are not strictly dominated, but seem very unattractive. Regardless of the order of deletions,
IDWDS deletes both of these strategies because each is weakly dominated, and remains so if the other is deleted. In contrast,
RBEU runs as follows: C(0) = 〈∅,∅〉; C(1) = 〈{first, left},∅〉; C(2) = 〈{first, left}, {second, right}〉; C(3) = C(2). That is, first and
left are accumulated at stage 1; and second and right are deleted at stage 2. Note that RBEU does not delete second and right
because they are weakly dominated per se. It is only after first and left have been accumulated (as they are optimal for all
beliefs) that RBEU requires strictly positive probability to be assigned to them and so deletes second and right (as they are
not optimal for any beliefs satisfying this requirement).

Although RBEU and IDWDS delete the same strategies in Game 2, there are many games where this is not so. We first
show that, even if its order of deletion is uniquely determined, IDWDS may delete strategies that RBEU does not delete.
An example is a game discussed by Samuelson (1992, esp. pp. 304–305), which provides perhaps the simplest possible
illustration of the undercutting problem14:

Game 3

Player 2

left right

Player 1
first 1, 1 1, 0
second 1, 0 0, 1

13 This formulation of IDSDS, and later analogous formulations of IDWDS, rely on Theorems 1.6 and 1.7 of Myerson (1991). These theorems establish
equivalences between propositions about dominance and propositions about optimality, conditional on allowable probability distributions. By using and “if
and only if” here, we are defining maximal IDSDS, i.e. the form of IDSDS in which all strategies which are strictly dominated at a given stage are deleted
at that stage. It is well known that, in finite games, it makes no difference to the strategies which survive IDSDS whether this requirement is imposed or
some non-maximal variant used. The maximal variant is, however, simpler to define.
14 Samuelson uses the game in support of an argument that common knowledge of admissibility is not a consistent concept.
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For this game, all IDWDS procedures delete second (and nothing else) at the first stage, followed by right at the second
stage, leaving first and left undeleted. But the deletion of right undercuts the justification for the earlier deletion of second.
That is, if right will not be played, there seems no reason to discard second, which is a best reply to left. In contrast, when
RBEU is applied to this game, it accumulates first at the first stage, but does not delete any strategy. The justification for
accumulating first is that it is optimal for all beliefs; the reason for not deleting second is that such deletion is not required
unless right is accumulated first. But right is never accumulated, as it is not a best reply to first, which is accumulated at
the first stage.

Can RBEU delete strategies that are not deleted by IDWDS? The answer depends on how the order of deletion under
IDWDS is specified, as we will explain.

A general result is that, in any given game, all the deletions made by RBEU would also be made by IDWDS under some
order of deletions. Specifically, deletions made in the same order as they are made by RBEU are always consistent with
IDWDS. To demonstrate this, we describe IDWDS in terms of “allowable” probability distributions.

Consider a sequence of stages k = 1,2, . . . at which deletions are made in accordance with IDWDS. For each stage k,
let Di(k) and D−i(k) be defined as in our reformulation of IDSDS. For each k � 1, the set of allowable beliefs for each
player i, under IDWDS, is the set of probability distributions that assign zero probability to every element of D−i(k − 1) and
strictly positive probability to every other strategy. (The presence of the italicised clause distinguishes IDWDS from IDSDS.) It
is common to all IDWDS procedures that a strategy for player i may be deleted at stage k only if it is not expected utility
maximising for any allowable probability distribution. If this criterion permits any deletions at a given stage, at least one
permitted deletion is made. Notice that, at k = 1, IDWDS imposes tighter restrictions on allowable beliefs than RBEU does.
Thus, any deletions made by RBEU at this stage are also permitted by IDWDS. Now suppose that the deletions made at
k = 1 are exactly those required by RBEU. The argument can then be repeated: at k = 2, any deletions made by RBEU are
also permitted by IDWDS; and so on. Thus, the sequence of deletions made by RBEU coincides with one possible sequence
of IDWDS up to the stage at which the RBEU procedure halts. But, there may be no sequence of IDWDS that stops deleting
when RBEU does. (In Game 3, for example, RBEU halts without deleting anything, but all IDWDS procedures delete some
strategies.)

However, as is shown by Game 4 below, specific IDWDS procedures may fail to delete strategies which RBEU does delete.
(The argument of the previous paragraph implies that this eventuality can only arise in a game with an order-sensitivity
problem for IDWDS. It is easy to see that Game 4 has this feature.)

Game 4

Player 2

left centre right

Player 1
first 1, 1 1, 1 0, 0
second 1, 1 0, 1 1, 0
third 0, 1 0, 0 2, 0

We compare RBEU with maximal IDWDS. Maximal IDWDS deletes centre and right, then third, leaving first, second, and left
undeleted. RBEU accumulates left and deletes right; then accumulates first and deletes third; then accumulates centre15;
and finally deletes second. Thus, second is deleted by RBEU but not by maximal IDWDS. RBEU is eventually able to delete
second because it has previously accumulated centre. It was able to accumulate centre because it had previously deleted
third. However, before any strategies are deleted, centre is weakly dominated, and so is deleted immediately by maximal
IDWDS. This is another example of undercutting: the initial justification for deleting centre is undercut by the later deletion
of third.

Unlike IDWDS, RBEU is not vulnerable to order-sensitivity and undercutting problems. Formally, this is an implication
of the fact that RBEU is a categorisation procedure (see Section 2). More intuitively, it reflects the distinction between
accumulation and non-deletion. At each stage of RBEU, players are required to assign zero probability to previously deleted
strategies and strictly positive probability to previously accumulated strategies. In contrast, at a given stage of IDWDS, players
are implicitly required to assign zero probability to previously deleted strategies and strictly positive probability to strategies
that have not yet been deleted. This difference is crucial. Strategies which have been accumulated in RBEU could never be
deleted later, and so the rationale for requiring strictly positive probability on them is secure. In contrast, strategies which
have not been deleted at a given stage of IDWDS may still be deleted at a later stage, so the case for requiring strictly
positive probability on them can be undercut.

15 Notice that, by accumulating centre, RBEU actually accumulates (and not merely fails to delete) a strategy that IDWDS deletes.
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4.3. The Dekel–Fudenberg procedure

Dekel and Fudenberg (1990) propose an iterative procedure which combines elements of IDSDS and maximal IDWDS. In
this procedure (which we denote DF), there is one stage of maximal deletion of weakly dominated strategies, followed by
IDSDS on the game that remains.16 In some games, DF deletes strategies that RBEU fails to delete (or even accumulates);
in others, RBEU deletes strategies that DF does not. Game 4 illustrates both these possibilities. In this game, DF coincides
exactly with maximal IDWDS; DF deletes centre but not second, while RBEU deletes second and accumulates centre. The
deletion of centre (and more generally, the deletion—that DF always accomplishes—of every strategy that would be weakly
dominated in the absence of any deletions) might be justified as a principle of “caution”, if caution is understood as requiring
some non-zero degree of belief, even if only at some level in a lexicographic probability system, to be assigned to every
possible combination of one’s opponents’ strategies.17 However, RBEU rests on a stronger interpretation of the players’
mutual understanding of rationality, according to which strategies that can be shown to be impermissible are assigned zero
probability.

4.4. The Asheim–Dufwenberg procedure

Asheim and Dufwenberg (2003) present a procedure of iterative elimination of choice sets. This begins, for each player i,
with the collection of non-empty subsets of Si (“choice sets”) and then iteratively deletes elements from this collection.
Thus, at each stage, the Asheim–Dufwenberg procedure (henceforth AD) generates, for each player i, a collection of so-far
surviving choice sets for i. The final output of the procedure is a binary partition of the collection of choice sets: each such
set is either eliminated or not.

Indirectly, however, AD induces a trinary partition of each strategy set Si . One element of this partition, which we may
denote S+

i , contains those strategies that are members of all surviving choice sets for player i; the second element S−
i

contains those strategies that are members of no such sets; the third element is the residual. There is an obvious sense in
which the elements of S+

i have been categorised as “permissible” and the elements of S−
i as “impermissible”.18 One might

ask whether, given this interpretation, AD coincides with RBEU.
The answer is that it does not. The specification of AD is such that if a strategy si is weakly dominated, it cannot

be an element of any surviving choice set—that is, in the terms used in the previous paragraph, it is assigned to S−
i .

The corresponding property does not hold in general for RBEU. Consider the following game (which is G3 of Asheim and
Dufwenberg, 2003):

Game 5

Player 2

left right

Player 1
first 1, 1 1, 1
second 1, 1 1, 0
third 1, 0 0, 1

Asheim and Dufwenberg (2003, pp. 211, 214) show that their procedure first deletes all choice sets for player 1 except {first,
second}. Then, it deletes all choice sets for player 2 except {left}. No more deletions are possible. Thus, S+

1 = {first, second},
S−

1 = {third}, S+
2 = {left}, S−

2 = {right}. Notice that third, which is weakly dominated, has been categorised as impermissible.
RBEU does not have this implication: it accumulates first and second and then halts.

5. Conclusion

We have argued that RBEU has a novel and attractive combination of properties, including ability to delete more strate-
gies than IDSDS, order-insensitivity, and absence of undercutting problems. Its possession of these properties is intimately
connected with its capacity to be interpreted as tracking successive steps of reasoning that can be carried out by the players.

This capacity is induced by a fundamental feature of RBEU, namely that it is a “categorisation procedure”. RBEU is of
particular interest because of the analogies and disanalogies between it and IDWDS. However, other categorisation proce-
dures may be of interest too, and share the properties demonstrated in Section 2. To define such a procedure, what is

16 Hammond (2004) defines a variant of DF in which, for a strategy to be deleted, it must be dominated (in the sense applicable to the relevant stage) by
a pure strategy. The comparisons that we make between RBEU and DF using Game 4 are unaffected by whether or not one amends DF in this way.
17 This conception of caution is discussed by Asheim and Dufwenberg (2003). See Asheim and Perea (2009) for further exploration of iterative procedures

that incorporate this concept.
18 We use the term “permissible” here in the same sense as in our informal interpretation of categorisations in Section 2. Asheim and Dufwenberg (2003)

have a different, and formal, concept of permissible sets.
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required is to specify an aggregate categorisation function. Our analysis in Section 3 illustrates a recipe for achieving this,
using the concept of a set of probability distributions that are allowable for player i, given a categorisation of other players’
strategies. In this set-up, two ingredients provide the key (by being jointly sufficient for the crucial Monotonicity property
of a categorisation function for player i). The first is that, as the categorisation relative to which they are defined acquires
strictly more content, the rules defining the allowable probability distributions tighten. The second is that, when this hap-
pens, the rules assigning strategies to the positive component of the resulting categorisation of i’s strategies become easier
to satisfy, and likewise for the negative component. Each of these ingredients is consistent with a variety of modifications
of the sub-rules that define RBEU.

One possible variant is the categorisation procedure which differs from RBEU only by the removal, for each player i, of
the positive sub-rule of the reasoning-based allowability rule. This amendment makes deletions at each stage dependent
only on previous deletions; although strategies can be accumulated, accumulations have no implications for subsequent
operations of deletion. It is easy to show that, at each stage, this variant procedure makes exactly the same deletions as
maximal IDSDS.19 Another possible variant on RBEU is to impose on it the additional restriction that, in allowable probability
distributions, the probabilities assigned to strategies of different players should be independent.20 Finally, a more radical
possibility would be to substitute some other theory of choice under uncertainty for expected utility theory. This could
be done by replacing “is expected-utility maximising” in the assignment sub-rules of RBEU with some other predicate
defined relative to probability distributions. For example, rank-dependent expected utility theory, in which probabilities
are transformed non-linearly into “decision weights” (Quiggin, 1982) could be used in place of conventional expected utility
theory as the underlying conception of “rational” choice. We suggest that the concept of a categorisation procedure provides
a general theoretical framework for the development and investigation of reasoning-based iterative procedures.

Appendix A. Proofs of Propositions 1 and 2

It is convenient to begin with the following lemma:

Lemma. Consider any game in G and any profile f = ( f1, . . . , fn) of categorisation functions for its players. Let ζ be the aggregate
categorisation function that summarises f . ζ has the following property: for all C ′ , C ′′ ∈ Φ(S), if C ′′ ⊇∗ C ′ then ζ(C ′′) ⊇∗ ζ(C ′).

Proof. Fix any game in G and any profile f = ( f1, . . . , fn) of categorisation functions for its players. Let C ′ , C ′′ be any
categorisations of S, and (for each i ∈ N) let C ′

−i , C ′′
−i denote the corresponding categorisations of S−i . If C ′′ = C ′ , it is

immediate that ζ(C ′′) = ζ(C ′). Now, suppose that C ′′ ⊃∗ C ′ . This entails C ′′
−i ⊇∗ C ′

−i for all i ∈ N , with C ′′
−i ⊃∗ C ′

−i for at
least some i. Using Monotonicity of the functions f i , this in turn entails that f i(C ′′

−i) ⊇∗ f i(C ′
−i) for all i. Thus, from the

construction of ζ, ζ(C ′′) ⊇∗ ζ(C ′). �
Proof of Proposition 1. Fix any game in G and any aggregate categorisation function ζ for the game. As ζ summarises a
profile f of categorisation functions, the lemma applies to it. Thus, from the Continuation rule, the categorisation procedure
for ζ has the property that, for all k ∈ {1,2, . . .}, if C(k) ⊇∗ C(k − 1) then C(k + 1) ⊇∗ C(k). Part (a) follows by induction,
as the Initiation rule guarantees C(1) ⊇∗ C(0) = 〈∅,∅〉. Part (b) is then a straightforward implication of finiteness of the
game. �
Proof of Proposition 2. In this proof, reference to rules (i), (ii), (iii) and (iv) are to the rules defining a potentially-negligent
variant of a categorisation procedure.

Proof of (a). Since C ′(1) ⊇∗ C ′(0) follows trivially from rule (i), it is sufficient to prove that, for all k ∈ {0,1,2, . . .}, C ′(k +
1) ⊇∗ C ′(k) implies C ′(k + 2) ⊇∗ C ′(k + 1). Suppose C ′(k + 1) ⊇∗ C ′(k). By the lemma, ζ [C ′(k + 1)] ⊇∗ ζ [C ′(k)]. By rule (ii),
ζ [C ′(k)] ⊇∗ C ′(k + 1). Thus ζ [C ′(k + 1)] ⊇∗ C ′(k + 1). Then, by rules (iii) and (iv), C ′(k + 2) ⊇∗ C ′(k + 1).

Proof of (b). Given (a), (b) follows from the finiteness of the game.
Proof of (c). We first show that C(k∗) ⊇∗ C ′(k∗∗). Since C(k∗) ⊇∗ C ′(0) is trivially true, by rule (i), it is sufficient to prove

that, for all k ∈ {0,1,2, . . .}, C(k∗) ⊇∗ C ′(k) implies C(k∗) ⊇∗ C ′(k + 1). Suppose C(k∗) ⊇∗ C ′(k). By the lemma, ζ [C(k∗)] ⊇∗
ζ [C ′(k)]. But ζ [C(k∗)] = C(k∗) by the definition of k∗ , and ζ [C ′(k)] ⊇∗ C ′(k + 1) by rule (ii). Thus C(k∗) ⊇∗ C ′(k + 1). We
complete the proof by showing that C ′(k∗∗) ⊇∗ C(k∗). Since C ′(k∗∗) ⊇∗ C(0) follows trivially from the Initiation rule of the
categorisation procedure, it is sufficient to prove that, for all k ∈ {0,1,2, . . .}, C ′(k∗∗) ⊇∗ C(k) implies C ′(k∗∗) ⊇∗ C(k + 1).
Suppose C ′(k∗∗) ⊇∗ C(k). By the lemma, ζ [C ′(k∗∗)] ⊇∗ ζ [C(k)]. But ζ [C ′(k∗∗)] = C ′(k∗∗) by the definition of k∗∗ and rule (iii),
and ζ [C(k)] = C(k + 1) by the Continuation rule of the categorisation procedure. Thus C ′(k∗∗) ⊇∗ C(k + 1). �
19 However, the procedure we have defined differs from IDSDS by distinguishing two ways in which strategies may survive the deletion process: a strategy

may be optimal for all beliefs that attach zero marginal probability to deleted strategies (and therefore be accumulated), or it may merely be optimal for
some but not all such beliefs (and therefore be neither accumulated nor deleted).
20 This would result in the “ICEU” procedure proposed by Cubitt and Sugden (2008).
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