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Deliberation in Games

“The economist’s predilection for equilibria frequently arises from the
belief that some underlying dynamic process (often suppressed in formal
models) moves a system to a point from which it moves no further.”
aasdfadsf (pg. 1008)

B. D. Bernheim. Rationalizable Strategic Behavior. Econometrica, 52, 4, pgs. 1007 -
1028.

“It is not just a question of what common knowledge obtains at the
moment of truth, but also how common knowledge is preserved, created,
or destroyed in the deliberational process which leads up to the moment
of truth.” (pg. 160)

B. Skyrms. The Dynamics of Rational Deliberation. Harvard University Press, 1990.
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From Substantive to Procedural Rationality

“Discussions of substantive rationality take place in an essentially static
framework. Thus, equilibrium is discussed without explicit reference to
any dynamic process by means of which the equilibrium is achieved.
Similarly, prior beliefs are taken as given, without reference to how a
rational agent acquires these beliefs. Indeed, all questions of the
procedure by means of which rational behavior is achieved are swept aside
by a methodology that treats this procedure as completed and reifies the
supposed limiting entities by categorizing them axiomatically.” (pg. 180)

K. Binmore. Modeling Rational Players: Part I. Economics and Philosophy, 3, pgs. 179
- 214, 1987.
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From Substantive to Procedural Rationality

What does it mean to choose “rationally”?

“A glance at any dictionary will confirm that economists, firmly
entrenched in the static viewpoint described above, have hijacked this
word and used it to mean something for which the word consistent would
be more appropriate. ” (pg. 181)

K. Binmore. Modeling Rational Players: Part I. Economics and Philosophy, 3, pgs. 179
- 214, 1987.
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Decision Theory

Choose an act at time t that maximizes (causal, evidential) expected
utility with respect to a probability Prt that characterizes your beliefs at
time t.
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Deliberational Decision Theory

Current Evaluation: If Prt characterizes your beliefs at time t, then at t
you should evaluate each act by its (causal, evidential) expected utility
computed using Prt .

Full Information: You should act on your time-t utility assessments only
if those assessments are based on beliefs that incorporate all the evidence
that is both freely available to you at t and relevant to the question
about what your acts are likely to cause.

Sometimes initial opinions fix actions, but not always (e.g., Murder
Lesion, Psychopath Button)
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Modeling Rational Deliberation

M0 M1 M2 Mf· · ·!ϕ1 !ϕ2 !ϕ3 !ϕn

fixed-pointinitial
model

Oi (S)
Pj(S ′)
· · ·

Oj(T )
Pj(T ′)
· · ·

Oi (S)
Pj(S ′)
· · ·

nothing
new

Each Mi describes what the decision maker believes, including beliefs
about what they are going to do (at the end of deliberation).
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Modeling Rational Deliberation

M0 M1 M2 Mf· · ·!ϕ1 !ϕ2 !ϕ3 !ϕn

fixed-pointinitial
model

What
should
I do?

What
should
I do?

What
should
I do?

nothing
new

Dynamical rules transform the decision maker’s beliefs, given her
evaluation of the available acts. a Nash equilibrium in a game,
probabilities measure over own strategies, categorization of
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Modeling Rational Deliberation

M0 M1 M2 Mf· · ·!ϕ1 !ϕ2 !ϕ3 !ϕn

fixed-pointinitial
model

What
should
I do?

What
should
I do?

What
should
I do?

nothing
new

Deliberations stops when a “fixed-point” is reached. asdf a sdf asdf asfd
Examples include: component of a Nash equilibrium in a game,
probabilities measure over own strategies, categorization of .
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Updated Probability on Acts

If Prt(A) < 1 and x > y , then
Prt(A | EUt(A) = x & EUt(∼A) = y) > Prt(A)
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Skyrms’ Model of Deliberation

For each t, Mt consists of two components: a probability on the set of
acts and a probability over the state of the world.

At each time t,

Step 1: The agent assesses the utilities of acts in light of her beliefs at
time t about the state of the world.

Step 2: The agents alters her probabilities for acts and states in light of
utilities using an update rule that “seeks the good” by increasing
probabilities of acts with utilities above the status quo, decreasing
probabilities of acts with utilities below the status quo and leaving
probabilities of acts equal to the status quo unchanged.
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Information Feedback

In the simplest case, deliberation is trivial; one calculates expected utility
and maximizes

Information feedback: “the very process of deliberation may generate
information that is relevant to the evaluation of the expected utilities.
Then, processing costs permitting, a Bayesian deliberator will feed back
that information, modifying his probabilities of states of the world, and
recalculate expected utilities in light of the new knowledge.”
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Deliberational Equilibrium

The decision maker cannot decide to do an act that is not an equilibrium
of the deliberational process.

(provided we neglect processing costs...the implementations use a
“satisficing level”)

This sort of equilibirium requirement can be seen as a consequence of
the expected utility principle (dynamic coherence).

It is usually neglected because the process of informational feedback is
usually neglected.
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Details of the Model

A decision maker has to choose between n acts: s1, s2, . . ., sn

State of indecision: P = 〈p1, . . . , pn〉 of probabilities for each act
(
∑

i pi = 1). The default mixed act is the mixed act corresponding to
the state of indecision (decision makers always make a decision).

Status quo: EU(P) =
∑

i pi · ui (si )
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A person’s state of indecision evolves during deliberation.

After computing expected utility, she will believe more strongly that she
will ultimately do the acts (or one of those acts) that are ranked more
highly than her current state of indecision.

The decision maker follows a “simple dynamical rule” for “making up
one’s mind”

Eric Pacuit 13



The Dynamical Rule “Seeks the good”

1. the dynamical rule raises the probability of an act only if that act
has utility greater than the status quo

2. the dynamical rule raises the sum of the probability of all acts with
utility greater than the status quo (if any)

Fact. All dynamical rules that seek the good have the same fixed points:
those states in which the expected utility of the status quo is maximal.
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decision maker’s personal state: 〈x , y〉 where x is the state of indecision
and the probabilities she assigns to the “states of nature”

Dynamics: ϕ(〈x , y〉) = 〈x ′, y ′〉 consisting of

1. An “adaptive dynamic map” D sending 〈x , y〉 to x ′

2. the informational feedback process I sending 〈x , y〉 to y ′

A personal state 〈x , y〉 is a deliberational equilibrium iff
ϕ(〈x , y〉) = 〈x , y〉
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Nash Dynamics

covetability of act A: given a state of indecision P
cov(A) = max(EU(A)− EU(P), 0)

Nash map: P 7→ P′ where each component p′i is calculated as follows:

p′i =
pi + cov(Ai )

1 +
∑

i cov(Ai )

More generally, for k > 0,

p′i =
k · pi + cov(Ai )

k +
∑

i cov(Ai )

where k is the “index of caution”. The higher the k the more slowly the
decision maker moves in the direction of acts that look more attractive
than the status quo.
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Fact. If D seeks the good and I is continuous, then there is a
delbierational equilibrium, 〈x , y〉, for 〈D, I 〉. If D ′ also seeks the good,
then 〈x , y〉 is also a deliberational equilibrium for 〈D ′, I 〉. The default
mixed act corresponding to x maximizes expected utility at 〈x , y〉.

Eric Pacuit 17



Tension with the Logical Omniscience Assumption?

“Any context where an agent engages in reasoning is a context that is
distorted by the assumption of deductive omniscience, since reasoning (at
least deductive reasoning) is an activity that deductively omniscient
agents have no use for.

Deliberation, to the extent that it is thought of
as a rational process of figuring out what one should do given one’s
priorities and expectations is an activity that is unnecessary for the
deductively omniscient. In fact any kind of information processing or
computation is unintelligible as an activity of a deductively omniscient
agent. ” (pp. 428,429)

R. Stalnaker. The Problem of Logical Omniscience, I. Sythese, 89:3, 1991, pp. 425 -
440.
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Deliberation Crowds out Prediction?

No probabilities of acts!

F. Schick. Self-Knowledge, Uncertainty and Choice. The British Journal for the Philos-
ophy of Science, 30:3, pgs. 235 - 252, 1979.

I. Levi. Rationality, prediction and autonomous choice. in The Covenant of Reason.

W. Rabinowicz. Does Practical deliberation Crowd Out Self-Prediction?. Erkenntnis,
57, 91-122, 2002.

J. Joyce. Levi on Predicting One’s Own Actions. Philosophical Studies, 110, pgs. 69 -
102, 2002.
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Deliberation in Games

I The Harsanyi-Selten tracing procedure

I Brian Skyrms’ models of “dynamic deliberation”

I Ken Binmore’s analysis using Turing machines to “calculate” the
rational choice

I Robin Cubitt and Robert Sugden’s “reasoning based expected utility
procedure”

I Johan van Benthem et col.’s “virtual rationality announcements”

Different frameworks, common thought: the “rational solutions” of a
game are the result of individual deliberation about the “rational” action
to choose.
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Tracing Procedure

J.C. Harsanyi. The Tracing Procedure: A Bayesian Approach to Defining a Solution for
n-Person Noncooperative Games. International Journal of Game Theory, 4, pgs. 61 -
94, 1975.

J. C. Harsanyi and R. Selten. A general theory of equilibrium selection in games. The
MIT Press, 1988.

P. Jean-Jacques Herings. Two simple proofs of the feasibility of the linear tracing
procedure. Economic Theory, 15, pgs. 485 - 490, 2000.

S. H. Schanuel, L.K. Simon, and W. R. Zame. The algebraic geometry of games and
the tracing procedure. in Game equilibrium models II: methods, morals and markets,
pgs. 9 - 43, Springer, 1991.
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The Tracing Procedure

Bob

A
nn

U L R

U 4,1 0,0 U

D 0,0 1,4 U

Bob

A
nn

U b1 if a1 b2 if a1

a1 -1,-1 1,1 U

a2 0,0 0,0 U

Suppose there is a common prior that Ann will choose U with
probability 0.5 and Bob will choose L with probability 0.5
Consider the modified game where the utilities are the expected
utilities of the first game
For each t ∈ [0, 1], the game G t is defined so that the payoffs of
ut
i (x , y) = x · u0

i (x , y) + (1− x)u1
i (x , y)
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i (x , y) = t · u1
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I A graph of the equilibrium points as t varies from 0 to 1 will show a
connected path from equilibria in G 0 to equilibria in G 1
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The Tracing Procedure
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i (x , y) + (1− t) · u0
i (x , y)

I A graph of the equilibrium points as t varies from 0 to 1 will show a
connected path from equilibria in G 0 to equilibria in G 1

I This process almost always leads to a unique equilibrium in G 1

(modifying the payoffs with a a logarithmic term guarantees
uniqueness)
This game as a unique Nash equilibriumEric Pacuit 22



Harsanyi and Selten also propose a method to calculate a prior given the
game.

The picture is of deliberators who are “computationally adept but,
initially at least, strategically naive”

They can identify game-theoretic equilibria instantaneously.

At t = 0 each contemplates jumping to the conclusion that the act the
with maximum expected utility according to the common prior is the
correct one.

At later times, the hypothesis that the other players will make their best
response gets stronger and stronger, until at t = 1 only an equilibrium
point of the original game remains.

Eric Pacuit 23
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They can identify game-theoretic equilibria instantaneously.

At t = 0 each contemplates jumping to the conclusion that the act the
with maximum expected utility according to the common prior is the
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At later times, the hypothesis that the other players will make their best
response gets stronger and stronger, until at t = 1 only an equilibrium
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Skyrms’ model of deliberation in games.
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Games played by Bayesian deliberators

For each player, the decisions of the other players constitute the relevant
state of the world, which together with her decision, determines the
consequences in accordance with the payoff matrix.

1. Start from the initial position, player i calculates expected utility
and moves by her adaptive rule to a new state of indecision.

2. She knows that the other players are Bayesian deliberators who have
just carried out a similar process.

3. So, she can simply go through their calculations to see their new
states of indecision and update her probabilities for their acts
accordingly (update by emulation).
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Games played by Bayesian deliberators

Under suitable conditions of common knowledge, a joint deliberational
equilibrium on the part of all players corresponds to a Nash equilibrium
point of the game.

Strengthening the assumptions slightly leads in a natural way to
refinements of the Nash equilibrium.
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Bob

A
nn

U L R

U 2,1 0,0 U

D 0,0 1,2 U

PA = 〈0.2, 0.8〉 and PB = 〈0.4, 0.6〉
EU(U) = 0.4 · 2 + 0.6 · 0 = 0.8
EU(D) = 0.4 · 0 + 0.6 · 1 = 0.6
EU(L) = 0.2 · 1 + 0.8 · 0 = 0.2
EU(R) = 0.2 · 0 + 0.8 · 2 = 1.6
SQA = 0.2 · EU(U) + 0.8 · EU(D) = 0.2 · 0.8 + 0.8 · 0.6 = 0.64
SQB = 0.4 · EU(L) + 0.6 · EU(R) = 0.4 · 0.2 + 0.6 · 1.6 = 1.04
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PA = 〈0.2, 0.8〉 and PB = 〈0.4, 0.6〉
EU(U) = 0.8 COV (U) = max(0.8− 0.64, 0) = 0.16
EU(D) = 0.6 COV (D) = max(0.6− 0.64, 0) = 0
EU(L) = 0.2 COV (L) = max(0.28− 1.04, 0) = 0
EU(R) = 1.6 COV (R) = max(1.6− 1.04, 0) = 0.56
SQA = 0.64
SQB = 1.04
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EU(U) = 0.8 COV (U) = max(0.8− 0.64, 0) = 0.16
EU(D) = 0.6 COV (D) = max(0.6− 0.64, 0) = 0
EU(L) = 0.2 COV (L) = max(0.28− 1.04, 0) = 0
EU(R) = 1.6 COV (R) = max(1.6− 1.04, 0) = 0.56

pU = k·0.2+0.16
k+0.16

pL = k·0.4+0
k+0.56
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A
nn

U L R

U 2,1 0,0 U

D 0,0 1,2 U

PA = 〈0.2, 0.8〉 and PB = 〈0.4, 0.6〉
EU(U) = 0.8 COV (U) = max(0.8− 0.64, 0) = 0.16
EU(D) = 0.6 COV (D) = max(0.6− 0.64, 0) = 0
EU(L) = 0.2 COV (L) = max(0.28− 1.04, 0) = 0
EU(R) = 1.6 COV (R) = max(1.6− 1.04, 0) = 0.56
pU = 10·0.2+0.16

10+0.16 = 0.212598

pL = k·0.4+0
k+0.56 = 0.378788
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Bob

A
nn

U L R

U 2,1 0,0 U

D 0,0 1,2 U

PA = 〈0.212598, 0.787402〉 and PB = 〈0.378788, 0.621212〉
EU(U) = 0.38 · 2 + 0.62 · 0 = 0.8
EU(D) = 0.38 · 0 + 0.62 · 1 = 0.6
EU(L) = 0.21 · 1 + 0.78 · 0 = 0.2
EU(R) = 0.21 · 0 + 0.78 · 2 = 1.6
SQA = 0.21 · EU(U) + 0.78 · EU(D)
SQB = 0.37 · EU(L) + 0.62 · EU(R)
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Bob

A
nn

U L R

U 2,1 0,0 U

D 0,0 1,2 U

PA = 〈0.2, 0.8〉 and PB = 〈0.1, 0.9〉
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Bob

A
nn

U L R

U 2,1 0,0 U

D 0,0 1,2 U

PA = 〈0.2, 0.8〉 and PB = 〈0.2, 0.8〉
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Bayes Dynamics

If the new information that a player gets by emulating other players’
calculations, updating his probabilities on their actions, and recalculating
his expected utilities is e, then his new probabilities that he will do act A
should be:

p2(A) = p1(A | e) = p1(A) · p1(e | A)∑
i p1(Ai ) · p1(e | Ai )

where {Ai} is a partition on the alternative acts.

But our deliberators do not have the appropriate proposition e in a large
probability space that defines the likelihoods p(e | A).
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Is Nash a Bayes dynamics?

I If a deliberator starts with probability 1 that she will do some act
that has utility less than the status quo, Nash will pull that
probability down and raise the zero probabilities of competing acts.

“Indeed, one can argue that if a deliberator is absolutely sure which
act he is going to do he needn’t deliberate, and if he is absolutely
sure he won’t do an act, then his deliberation should ignore that
act. ”

I If two acts have expected utility less that the status quo, then they
both get covetability 0, even if their expected utilities are quite
different.
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Pumping up the probabilities of acts that look best and the ratios of the
probabilities of second to their place, etc. By Bayes Theorem,

p2(A)

p2(B)
=

p1(A)

p1(B)
· p1(e | A)

p1(e | B)
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Tendency toward better response

Assume that the decision makers likelihoods are an increasing function of
the newly calculated expected utilities.

Darwin flow:

p2(A) = p1(A) + k · p1(A) · EU(A)− EU(SQ)

EU(SQ)
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Bob

A
nn

U L R

U 3,1 0,0 U

D 0,0 1,3 U

PA = 〈0.05, 0.95〉 and PB = 〈0, 1〉
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Bob

A
nn

U L R

U 2,1 0,0 U

D 0,0 1,3 U

PA = 〈0.65, 0.35〉 and PB = 〈0.55, 0.45〉
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Normal form vs. Extensive Form

Explicitly modeling deliberation transforms a single choice into a
situation of sequential choice.

Eric Pacuit 44



Refinements for Nash equilibrium

Bob

A
nn

U L R

U 0,0 0,0 U

D 1,1 0,0 U

If Bayesian deliberation must start in the interior of the space of
indecision, then dynamic deliberation cannot lead to U,R.

Call an equilibrium accessible provided one can converge to it starting at
a completely mixed state of indecision.

Does accessibility correspond to perfect/proper equilibria?
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Proper equilibrium

Bob

A
nn

U L C R

U -9,-9 -4,-4 -4,-4 U

M 0,0 0,0 -4,-4 U

D 1,1 0,0 -9,-9 U

ε-perfect equilibrium: a completely mixed strategy profile in which any
pure strategy that is not a best reply receives probability less than ε

Prefect equilibrium: the mixed strategy profile that is the limit as ε
goes to 0 of ε-prefect equilibria.
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Proper equilibrium

Bob

A
nn

U L C R

U -9,-9 -4,-4 -4,-4 U

M 0,0 0,0 -4,-4 U

D 1,1 0,0 -9,-9 U

ε-proper equilibrium: a completely mixed strategy profile such that if
strategy s is a better response than s ′, then p(s)

p(s′) < ε

Proper equilibrium: the mixed strategy profile that is the limit as ε goes
to 0 of ε-proper equilibria.
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Proper equilibrium

Bob

A
nn

U L C R

U -9,-9 -4,-4 -4,-4 U

M 0,0 0,0 -4,-4 U

D 1,1 0,0 -9,-9 U

Starting at PA = 〈0.01, 0.5, 0.49〉 and PB = 〈0.01, 0.5, 0.49〉, Nash
dynamics converges to (M,C ), but Darwin converges to (D, L)

Proper equilibrium: the mixed strategy profile that is the limit as ε goes
to 0 of ε-proper equilibria.
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Bob

A
nn

U L R

U 0.5,0.5 0.5,0.5 U

D 1,1 0,0 U

Darwin can lead to an imperfect equilibrium. Nash can only lead to D, L.
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Samuelson identified adaptive rules that correspond to proper/perfect
equilibrium. A key feature is:

ordinality: the velocity of probability change of a strategy depends only
on the ordinal ranking among strategies according to their expected
utilities.

L. Samuelson. Evolutionary foundations for solution concepts for finite, two-player,
normal-form games. Proceedings of TARK, 1988.
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Normal form vs. Extensive form

A

B

-1,-1 1,1

0,0

a1 a2

b1 b2

Bob

A
nn

U b1 if a1 b2 if a1

a1 -1,-1 1,1 U

a2 0,0 0,0 U

(Cf. the various notions of sequential equilibrium)
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Normal form vs. Extensive form

T. Seidenfeld. When normal and extensive form decisions differ. in Logic, Methodology
and Philosophy of Science IX, Elsevier, 1994.
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Normal form vs. Extensive form

A

B

0,0 2,2

1,1

a1 a2

b1 b2

Bob

A
nn

U b1 if a1 b2 if a1

a1 0,0 2,2 U

a2 1,1 1,1 U

On the normal form, there are imperfect equilibria accessible by Darwin
dynamics (e.g., PA = 〈0, 1〉, PB = 〈0.04, 0.96〉).

This equilibria is not accessible on the tree: Bob calculates the expected
utility at his information set (so, PB(a1 | a1) = 1 and PB(a2 | a1) = 0).
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B

0,0 2,2

1,1

a1 a2

b1 b2

Bob

A
nn

U b1 if a1 b2 if a1

a1 0,0 2,2 U

a2 1,1 1,1 U

On the normal form, there are imperfect equilibria accessible by Darwin
dynamics (e.g., PA = 〈0, 1〉, PB = 〈0.97, 0.03〉).

This equilibria is not accessible on the tree: Bob calculates the expected
utility at his information set (so, PB(a1 | a1) = 1 and PB(a2 | a1) = 0).
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General comments

I Extensive games (imperfect information), imprecise probabilities,
other notions of stability, weaken common knowledge assumptions,...

I Generalizing the basic model.

I Relation with correlated equilibrium (correlation through rational
deliberation)

I Why assume deliberators are in a “information feedback situation”?

I Deliberation in decision theory.
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J. McKenzie Alexander. Local interactions and the dynamics of rational deliberation.
Philosophical Studies 147 (1), 2010.
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Consider a social network 〈N,E 〉 (connected graph)

Convention: If there is a directed edge from A to B, then A always plays
row and B always play column, and the interactions of Row and Column
are symmetric in the available strategies.

Let νi = {i1, . . . ij} be i ’s neighbors

p′a,b(t + 1) is represents the incremental refinement of player a’s state of
indecision given his knowledge about player b’s state of indecision (at
time t + 1).

Pool this information to form your new probabilities:

pi (t + 1) =
k∑

j=1

wi ,ijp
′
i ,ij

(t + 1)
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11

Billy
Boxing Ballet

Maggie
Boxing (2,1) (0,0)
Ballet (0,0) (1,2)

Fig. 7 The game of Battle of the Sexes.

80.7, 0.3<
80.7, 0.3<

80.7, 0.3<
80.4, 0.6<

80.4, 0.6<

80.4, 0.6<
(a) Initial conditions

81., 0<
81., 0<

81., 0<
80.4134, 0.5866<

80, 1.<

80, 1.<
(b) t = 1,000,000

Fig. 8 Battle of the Sexes played by
Nash deliberators (k = 25) on two cy-
cles connected by a bridge edge (val-
ues rounded to the nearest 10�4).

is just the opposite of that of players 1, 2, 3, and 8; hence the overall population state is
stable under the Nash dynamics.

4. Battle of the Sexes

Turning now from anti-coordination to coordination games, consider the game of Battle
of the Sexes as defined by the payoff matrix in figure 7. Simulations of the deliberational
dynamics for both Nash and Bayesian deliberators on a cycle of length three reveal that,
on that simple network, the population will coordinate on either All Go Boxing or All Go
To The Ballet. It is also straightforward to predict which of these two outcomes will come
about: look at the total aggregate probability assigned to Boxing and Ballet in the states of
indecision for the population. Whichever activity has more probability assigned to it will be
the activity the population converges upon.

The predictive success of that rule depends on the topology, though. Consider a graph
defined by the sequence of edges 1 ! 2 ! 3 ! 1, 4 ! 5 ! 6 ! 4 and 1 ! 4 (see figure 8).
If each player in the left “lobe” of graph has the state of indecision h.7, .3i and each player in
the right “lobe” has the state of indecision h.4, .6i, the total aggregate probability assigned to
Boxing in the population is 3.3, with Ballet receiving an aggregate of 2.7. Yet if each player
is a Nash deliberator with an index of caution k = 25, the left lobe converges to Boxing and
most of the right lobe converges to Ballet. This makes sense, given the topology, but it also
shows that the predictive rule which works on a simple cycle fails to work here.

It’s worth investigating what happens on more realistic and complex social networks.
Consider, then, the following sequence of simulations: for one thousand trials, generate a
random directed graph gi consisting of twenty vertices, and a random assignment of states
of indecision hpi1 , . . . ,pi20i to each vertex in gi.18 Then, for each of these initial conditions,
calculate the state resulting from stepping the model forward 1,000,000 iterations under the
Nash dynamics. Then do the same thing, except under Bayesian dynamics.

18 The random graphs were generated using the following procedure: each of the 190 possible edges had a
20% chance of being included. If the resulting graph was connected, it was used; if the resulting graph was
disconnected, it was thrown out and a new candidate was generated. The same graph was used for the ith trial
for both Nash and Bayes deliberators, as well as the same initial conditions.

Eric Pacuit 54


