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Abstract Whereas The Stag Hunt and the Evolution of Social Structure supplements Evo-
lution of the Social Contract by revisiting some of the earlier work’s strategic problems in
a local interaction setting, no equivalent supplement exists for The Dynamics of Rational
Deliberation. In this article, I develop a general framework for modeling the dynamics of
rational deliberation in a local interaction setting. In doing so, I show that when local in-
teractions are permitted, three interesting phenomena occur: (a) the attracting deliberative
equilibria may fail to agree with any of the Nash equilibria of the underlying game, (b) de-
liberative dynamics which converged to the same deliberative outcome in The Dynamics of
Rational Deliberation may lead to very different deliberative outcomes, and (c) Bayesian
deliberation seems to be more likely to avoid nonstandard deliberative outcomes, contrary
to the result reported in The Dynamics of Rational Deliberation, which argued in favour of
the Brown-von Neumann-Nash dynamics.

Keywords Evolution, Rationality, Bayesianism, Brown-von Neumann-Nash dynamics,
Social Network

1. Introduction

There are many models of rational deliberation. The best known model of the rational delib-
erator is that of homo economicus, the perfectly rational agent beloved by economists, who
makes choices which explicitly maximise his expected utility given the information avail-
able. Another model of rational deliberation is that of the virtually rational agent (Pettit,
1995), who only explicitly acts to maximise his expected utility when the anticipated loss
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dips below a previously identified toleration threshold. If this does not happen, the virtually
rational agent will carry on doing whatever it was he had been doing, where this is com-
patible with making choices according to criteria that have nothing to do with maximising
behavior. Then there are all the models of boundedly rational deliberation (see, for example,
Simon, 1957; Gigerenzer et al., 1999) where individuals make choices using heuristics. The
justification for employing heuristics is that they take advantage of structural features of the
choice problem to deliver approximately optimal results, while imposing a lesser cognitive
burden upon the individual. Lastly, the work of Kahneman et al. (1982) makes one wonder
whether people, really, achieve anything even remotely close to an approximately optimal
outcome from their own point of view.

In The Dynamics of Rational Deliberation, Skyrms introduced a model of rational de-
liberation which falls into the middle of this hierarchy. I locate it there because, although
individuals are not conceived of as an explicit maximisers, they modify their beliefs accord-
ing to dynamical rules which “seek the good”, where this means

1. the rule raises the probability of an act only if that act has utility greater than the status quo;
2. the rule raises the some of the probabilities of all acts with utility greater than that of the status

quo (if any).
(Skyrms, 1990, pg. 30)

Bayes’s Rule seeks the good, in the above sense, as does the function used by Nash (1951) to
prove his famous existence result regarding equilibria in games. Dynamical rules which seek
the good sit above boundedly rational heuristics in the heirarchy because, whereas heuristics
only guarantee approximately optimal results in suitable environments, dynamical rules that
seek the good lead to an equilibrium which maximises expected utility.

Let us investigate the Skyrmsian dynamics of rational deliberation more closely. The
precise scenario he concerns himself with is that where “two (or more) [. . . ] deliberators
are deliberating about what action to take in a noncooperative non-zero-sum matrix game”
(Skyrms, 1990, pg. 32). An action, here, corresponds to the strategy that a player will adopt
in the game. Because Skyrms wishes to model the deliberative process by which each player
comes to choose an action, he assumes that each player initially exists in a state of indeci-
sion over what to do (otherwise no deliberative problem exists). A state of indecision is
represented by a probability distribution over the set of possible actions.

As Skyrms noted, if we assume that the states of indecision are common knowledge, an
iterative revision process becomes possible. A player, given his own state of indecision and
his knowledge of the states of indecision of his opponents, can calculate, using his specified
dynamical rule, what incremental revision to his own state of indecision would maximally
increase his expected utility. (And, of course, given what he knows about his opponents,
he can also calculate how they will incrementally revise their states of indecision as well.)
Moreover, each of his fellow opponents also performs the same process themselves. This
leads to a new state of indecision for each of the players, where these new states of indecision
are also common knowledge, and the process begins again.

One should bear in mind an importance difference between these models and the more
recent work of Skyrms. Both Evolution of the Social Contract and The Stag Hunt and the
Evolution of Social Structure develop evolutionary models which are most naturally under-
stood as models of phenotypic change in a population. In these more recent works, a pop-
ulation of individuals faced with a strategic problem (e.g., divide-the-cake, the ultimatum
game, or the stag hunt), experience differential rates of “success” in the strategic problem
based upon the strategy they employ. These differential rates of success translate into phe-
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notypic change between an earlier moment of time and a later moment of time.1 However,
in The Dynamics of Rational Deliberation, the concern lies with how two (or more) players
involved in a strategic problem will modify their internal states of indecision (understood
as a probability distribution over possible actions) under conditions where suitably strong
common knowledge assumptions obtain.

Indeed, much of The Dynamics of Rational Deliberation concerns itself with investi-
gating questions in such a framework. What can one say about the existence of equilibria?
What about stability? And how do the results of these investigations point towards a theory
of rational deliberation?

Yet a serious omission remains. Although Skyrms considers cases where two (or more)
rational deliberators play a game, these games occur in the absence of a structured social
context. The game played by the two deliberators is a deliberative island, the outcome of
which fails to carry over and influence the outcomes of other processes of rational delib-
eration. In part, this omission affects all of rational choice theory, traditionally understood.
The classic theory of games, and even social choice theory, typically assume the choices of
persons are independent and occur in an unstructured environment. But this does not seem
right, for surely any observations I can make about how you revise your beliefs when inter-
acting with another give me some insight into how you are likely to revise your beliefs when
you interact with me.2 Moreover, when agents obtain information which they then use to
change their beliefs, the specific source of that information, and the channels through which
information flows, may matter as well.

Taking all of these things into account requires consideration of the socially networked
nature of society, and requires one to investigate the effect of local interactions upon ratio-
nal deliberation. However, doing so reveals some important differences between the social
network case and the ordinary two-person case. In what follows, I will argue for three points:
1. Allowing for local interactions in the dynamics of rational deliberation breaks the link

between convergent points of the deliberative dynamics and Nash equilibrium points of
the underlying game.

2. Whereas Skyrms (1990) observes that “All dynamical rules which seek the good have
the same fixed points: those states in which the expected utility of the status quo is
maximal”, this fails to be true, in general, in the local interaction framework.

3. Whereas The Dynamics of Rational Deliberation identified some reasons for preferring
Nash dynamics over the Bayesian dynamics (for example, “[Bayesian] deliberation can
lead to an equilibrium that is not only improper but also imperfect”), the effect of local
interactions reveal reasons for preferring the Bayesian dynamics over the Nash dynam-
ics, in some cases.

2. A local interaction model of rational deliberation.

In this section, I present a general framework for modeling the dynamics of rational deliber-
ation on social networks. I then consider the functional form of the dynamical rule used by

1 I am deliberately being ambiguous as to the nature of the phenotypic change. Most of the models used
in Skyrms (1996, 2003) can be understood as models of either biological evolution or cultural evolution, and
so the phenotypic change may occur as a result of strategic learning or as a result of differential rates of
reproduction.

2 Of course, there are a variety of reasons why this type of inference might go awry. You might believe
that the person you are currently interacting with is out to take advantage of you, but you believe that I will
not do so. My point is that, in the absence of reasons of this kind, the inference is plausible. At least to some
extent.
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people to modify their state of indecision, arguing that considerations of character stability
and bounded rationality suggest a linear pooling model. The section ends with some further
assumptions which shall be made for sake of simplicity in subsequent sections.

Let G = (V,E) be a graph, where V = {A0, . . . ,An} is the set of agents (also called the
population) and E the set of edges connecting the agents. For simplicity, we assume that G is
a connected graph.3 Each edge represents a local interaction between A0 and his neighbors,
and corresponds to a pairing for which a game will be played. For example, in figure 1, the
agent A0 is connected to three other agents and hence will play three games during each
iteration.

Suppose we have a two-player nonzero sum game of N strategies with a common payoff
structure for all members of the population and assume that this payoff structure is com-
mon knowledge. Following the general approach of The Dynamics of Rational Delibera-
tion, also assume that at a given time t, each player Ai exists in a certain state of indeci-
sion regarding what to do. This state of indecision corresponds to a probability distribution
pi(t) = 〈p1

i (t), . . . , pN
i (t)〉 over the various actions {1, . . . ,N} available to the agent at t. If

two players Ai and A j are connected by an edge, pi(t) and p j(t) are common knowledge
between Ai and A j.

A3

A2

A1

A0

Fig. 1 A simple social network.

This scenario already changes significantly the deliberative framework from that of The
Dynamics of Rational Deliberation. There the set of two (or more) players all participate
in the same common game, where each player’s action was instrumental in determining
the payoff to all. Here, though, we have multiple games being played side-by-side, and the
deliberative outcome between two players may have some, little, or no influence whatsoever
on the deliberative outcome of the rest of society. The exact nature of the influence depends
upon the specification of the dynamics.

3 Informally, a connected graph has the property that, for any two vertices, there exist a path which links
them. For directed graphs, where each edge (ai,a j) is understood as “pointing” from ai to a j , one can dis-
tinguish two senses of connectedness. A strongly connected graph is a directed graph such that, for any two
vertices, there exists a path which links them (where walking the path respects the directionality of the edges).
A weakly connected graph is a graph where, although any two vertices are linked by a path, one may need
to disregard the directionality of the edges when walking the path. Clearly all strongly connected graphs are
weakly connected, but not vice versa. Since I will ultimately consider directed graphs, I must note that by
“connected”, I mean “weakly connected”.
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What are natural dynamics to use for these local interaction models of rational delibera-
tion? To answer this, consider the functional form of the dynamical rule R used by a player
to adjust her state of indecision. A particular player, say Ai, is connected to a number of
other players as specified by the graph. Call these other players the neighbors of Ai, denoted
by ηi = {i1, . . . , ik}. Each one of Ai’s neighbors has her own state of indecision over actions,
pi1(t), . . . ,pik(t), and it is assumed that Ai knows these states of indecision. Furthermore,
each of Ai1 , . . . ,Aik known Ai’s state of indecision.4

The dynamical rule Ri used by Ai specifies how Ai changes her state of indecision given
the state of indecision of all of her neighbors. In short:

pi(t +1) = Ri
(
pi(t); pi1(t), . . . ,pik(t)

)
.

In The Dynamics of Rational Deliberation, Skyrms primarily considered the case where
a player has exactly one neighbor. In that case, the dynamical rule would be of the form
pi(t +1) = Ri

(
pi(t); pi1(t))

Note that we assume each player has a single state of indecision which governs her
interactions with all of her neighbors. This may strike some as controversial. Some may
think it more natural to allow players to conditionalise their act upon the identity of the
neighbor they are playing against. This makes sense if the identity of one’s neighbor is
known in advance, and a player can take that information into account when choosing.
However, this is not always possible. The model proposed here can be thought of one where
individuals “play the field” determined by their neighbors.5

There are other reasons to think that people do not always conditionalise their action
upon the person they are interacting with. For one, this imposes a greater memory require-
ment, as a person must remember her conditional states of indecisions for every one of her
neighbors. Although this is a trivial memory requirement, in the grand scheme of things
it will eventually become burdensome: given the number of interactions we have in our
daily lives, and the different types of games we play, even someone without a vast number
of friends and acquaintences would accumulate well over a hundred conditional states of
indecision to remember.6

Secondly, rampant conditionalisation seems a phenomenologically false description of
how we deliberate about our social interactions. I do not consciously formulate a different
state of indecision when I begin to interact with my plumber than when I interact with my
baker, butcher, or bourgeois neighbor. Perhaps it would be more rational if I did, but I don’t,
at least not consciously, and it would be a very odd thing, indeed, if I did so unconsciously!

Lastly, and most importantly, conditionalisation of our states of indecision seems to run
afoul of the perceived constancy of our character. Mill refers to this fact in the following
well-known passage from A System of Logic: “[G]iven the motives which are present to an
individual’s mind, and given likewise the character and disposition of the individual, the

4 Note, though, that Ai’s state of indecision is not necessarily common knowledge amongst all of his
neighbors. For example, Ai1 need not know that Ai2 knows that Ai’s state of indecision is pi(t). Common
knowledge exists for the states of indecision of two players joined by an edge.

5 Furthermore, note that if Ai were capable of conditionalising her state of indecision upon the person she
was interacting with, then we would simply have a case where the pairwise dynamics investigated in The
Dynamics of Rational Deliberation apply to the game played along each edge in G, modifying the condition-
alised states of indecision.

6 Why so many? Because the states of indecision will depend upon the nature of the game one is playing.
Even if you only tend to interact with a few people, say ten, on a regular basis, you will play a number of
different games with each person; each of these games will likely require a different response, and so you
will have a different state of indecision for each deliberative problem, even though each deliberate problem
is against the same person.
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manner in which he will act might be unerringly inferred.” That is, a person’s character
provides a basis or foundation, one reasonably stable and enduring over time, upon which
we can predict future behavior, even in novel circumstances.7

Note that this is not to say that we don’t conditionalise our actions at least some times
and in some cases. Even the most trusting of individuals would be well advised to look over
his shoulder when walking through Southwark late at night. And we do certainly assign
a different default degree of belief to any statement uttered by a used car salesman or an
insurance broker than statements uttered by our friends. My point is simply that these con-
ditionalised states of indecision mark important deviations from our general state which, in
some rough sense, we might call our character.

Given these considerations, I propose that the dynamical rule Ri which Ai uses to update
his state of indecision takes on the following form: Ai first calculates, for each pairwise
interaction, what his new state of indecision would be if that particular pairwise interaction
was the only interaction he had. Let us call these the notional pairwise refinements of a
player’s distribution. Denote these notional pairwise refinements for player Ai by p ′i,i1(t +
1), . . . ,p ′i,ik(t +1), where p ′a,b(t +1) represents the incremental refinement of player a’s state
of indecision given his knowledge about player b’s state of indecision. Player Ai then pools
these notional pairwise refinements to determine his new state of indecision by forming the
weighted average:

pi(t +1) =
k

∑
j=1

wi i j ·p
′
i,i j

(t +1).

The weights wi i j are exogenous parameters given by the edges of the social network, and
provide a measure of “social importance” for that particular interaction. In the case where all
interactions are taken to be equally important, then the weights are all the same for player i.8

This is a linear pooling method for probability aggregation. The reason why it is reason-
able to suppose that individuals use such a method is that it is the only aggregation method
which satifies the following constraints (see Lehrer and Wagner, 1981):

1. The aggregate probability player i assigns to strategy j at t + 1 depends only upon the
probability player i assigns to strategy j in all of his notional pairwise refinements at
t +1.

2. If player i assigns zero probability to strategy j in each of his notional pairwise refine-
ments at t +1, then player i assigns zero probability to strategy j in the aggregate.

Both of these are plausible when the aggregate probability is viewed as a person’s general
tendency to act a certain way in his dealings with other people.

What dynamical rule will players use when calculating the notional pairwise refinements
of their state of indecision? In The Dynamics of Rational Deliberation, Skyrms considered
two types of dynamical rules: the first derived from the mapping used by Nash to prove
his famous existence theorem (which had been studied earlier by Brown and von Neumann

7 Yet, having said that, I must acknowledge that the immediately following sentence in A System of Logic
challenges this interpretation. Mill subsequently writes “if we knew the person thoroughly, and knew all the
inducements which are acting upon him, we could foretell his conduct with as much certainty as we can
predict any physical event.” The fact that Mill includes the additional qualifier “and knew all the inducements
which are acting upon him” makes his claim ambiguous. Since each interaction counts as a different “in-
ducement” acting upon a person, it would be consistent with what Mill writes to say that a person could, in
principle, act differently whenever he interacts with a different person.

8 This does not mean that the weights will be the same across players, though, since there is an implicit
dependence upon the number of edges a player is incident upon. If Ai has three neighbors and A j has five,
then wi i1 = · · ·= wi i3 = 1

3 , but w j j1 = · · ·= w j j5 = 1
5 .
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Them
Don’t Swerve Swerve

You
Don’t Swerve (−10,−10) (5,−5)
Swerve (−5,5) (0,0)

Fig. 2 The game of Chicken.

(1950)); the second derived from Bayes’ Rule.9 We shall consider what happens under both
of these rules.

The above discussion obscures one technical issue which needs to be made explicit.
Skyrms (1990) assumed that players were assigned the role of Row or Column as a perma-
nent feature of the deliberative problem. When we consider the case of local interactions,
more than one way exists for handling the assignment of roles to players, and none suggests
itself as necessarily right. In a social network like that of figure 1, when should A0 be consid-
ered as playing Row and when should A0 play Column? One could require the underlying
graph to be directed, in which case the presence of the edge (Ai,A j) would assign Ai the
role of Row and A j the role of Column. Alternatively, we might think of the deliberative
process as one where both Ai and A j are uncertain as to whether they will be assigned Row
or Column, and they calculate the expected utility of the status quo taking this into account.

In the following, I assume that the underlying graph is directed. The presence of an edge
A→ B will mean that, insofar as the pairwise interaction of A and B is concerned, A always
plays as Row and B always plays as Column.10 Finally, I also assume that a player uses equal
weights when he pools his notional pairwise refinements, and that the interactions of Row
and Column are symmetric with respect to the available strategies (although not necessarily
the payoffs).

3. Chicken

Consider the game of Chicken defined by the payoff matrix of figure 2. In the ordinary two-
player setting, both Nash and Bayesian deliberators beginning at symmetric starting points
with a sufficiently high index of caution11 will converge to the mixed-strategy equilibrium;
if the Nash deliberators have asymmetric starting points, the population will converge to
the equilibrium in pure strategies where the player who initially assigned greater probability
to Don’t Swerve winds up assigning probability 1 to Don’t Swerve. Bayesian deliberators
beginning at a completely mixed asymmetric state will also likewise converge to one of the
two equilibria in pure strategies (Skyrms, 1990), although the vector field determining their
revision trajectories is bent differently from that of Nash deliberators (see figure 3).

What happens in a socially structured context? The simplest interesting case consists of
the three-player directed cycle given by 1→ 2→ 3→ 1. We can investigate this by sim-
ulation, starting the population in a variety of randomly chosen initial conditions and then

9 An explicit definition of both of these dynamical rules can be found in appendix A.
10 No particular assumption will be made regarding what constitutes a “natural” or “reasonable” assignment

of directions to edges. Quite often the same player will play as both Row and Column, although in games with
different people. This represents the fact that the role we play in a game is, quite often, a matter of historical
accident. Although I play as Row in an interaction with you, now, it could have been the case that I played
as Column, with you playing as Row, instead. In this model, the fact that a given player permanently takes
on the role of Row, in some interactions, and the role of Column, in other interactions, should be seen as a
consequence of these “historical accidents” determined by social and other causal forces which lie outside
the scope of the model.

11 See the definition of the dynamical rules in appendix A.
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(a) Nash dynamics, k = 25
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(b) Bayesian dynamics, k = 100

Fig. 3 Flow diagrams for two-player Chicken. The x-axis represents the probability assigned to Swerve by
Column, the y-axis represents the probability assigned to Don’t Swerve by Row. (This allows one to interpret
the flow diagram by visualizing the payoff matrix superimposed over the trajectories.) The dotted line in the
Bayesian case illustrates the asymmetric bending of the vector field.

stepping the model forward until it converges (if it does). When we do this with Nash delib-
erators using an index of caution of 1, we find that the group settles into one of two types
of attractors. The first type is a cycle of period two, where all players alternate between the
distribution 〈0.276393,0.723607〉 and the distribution 〈0.723607,0.276393〉.12 The second
type is a fixed point of the dynamics, where one player adopts the distribution 〈0,1〉 and
the rest 〈0.614508,0.385492〉 or one player adopts 〈1,0〉 and the rest 〈0.385492,0.614508〉.
Figure 4 illustrates the second type of attractor. Note that neither type corresponds in any
way to the standard Nash equilibria for the game of Chicken.

80.538407, 0.461593< 80.300405, 0.699595<

80.396084, 0.603916<

Player 1 Player 2

Player 3

(a) Initial conditions

90.999999, 8.73302 ´ 10-7= 80.385492, 0.614508<

80.385492, 0.614508<

Player 1 Player 2

Player 3

(b) t = 1,000,000

Fig. 4 The game of Chicken played on a three-person directed cycle with Nash deliberators having an index
of caution of 1. Probabilities shown as (Don’t Swerve, Swerve).

The first type of attractor is not a consequence of the local interaction framework. One
can prove that the probability distributions of the first type of equilibrium are, under the
Nash dynamics, a cycle of length two in the ordinary two-person case. (See appendix B for
a proof.) In our model, since each player revises his distribution by determining the notional
revisions for each of his pairwise interaction and then averaging, cycles of length two in the
ordinary two-person case will remain cycles of length two in our social network setting.

12 The probabilities are rounded to six decimal places.
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What of the second type of attractor? Here, again, we can prove that they are indeed a
fixed point of the dynamics (see appendix C). The important lesson this example demon-
strates is that just because the deliberative dynamics converge does not mean that the prob-
ability distributions of the players will be a Nash equilibrium of the underlying game.

If we run one thousand simulations on a cycle of length three, using Nash deliberators
having an index of caution of 25, we find the state where one person’s state of indecision
is 〈1,0〉 and the other two have states of indecision of 〈0.354245,0.645755〉 occurring 499
times.13 The converse state, with probabilities of 〈0,1〉 and 〈0.645755,0.354245〉, respec-
tively, occurs 477 times.14

Very different behavior occurs when we consider Bayesian deliberators. Out of one thou-
sand simulations using Bayesian deliberators having an index of caution of 100,15 all of
them converged to a state where one player assigned probability 1 to Don’t Swerve and the
other two assigned probability 1 to Swerve. It’s also very easy to predict what the final con-
vergent state will be: the player who initially assigns the greatest prior probability, however
small, to Don’t Swerve will, in the limit, assign probability 1 to Don’t Swerve. The other
two will assign probability 1 to Swerve.

Given our pooling method for how people aggregate probabilities from their pairwise
revisions, it seems that the probability distribution a person arrives at will depend crucially
on the network topology. What happens on a cycle containing four players? Simulations
show that in this case each individual ultimately converges to playing a pure strategy, where
the assignment of pure strategies to individuals is such that each pairwise interaction corre-
sponds to one of the ordinary pure strategy Nash equilibria of the game. (See figure 5 for
an illustration.) Here, individuals learn to coordinate their behavior so that people alternate
between swerving and not swerving in a way which ensures that no collisions occur. This
happens regardless of whether people are Nash or Bayesian deliberators.16

Player 1 Player 2

Player 3Player 4

80.964976, 0.0350237< 80.562988, 0.437012<

80.517411, 0.482589<80.827039, 0.172961<

(a) Initial conditions

Player 1 Player 2

Player 3Player 4

90.999993, 6.66784 ´ 10-6= 96.66787 ´ 10-6, 0.999993=

90.999993, 6.6679 ´ 10-6=96.66789 ´ 10-6, 0.999993=

(b) t = 750,000

Fig. 5 Chicken played on a cycle of length four with Nash deliberators using an index of caution of 25. The
probabilities appearing here are not fixed and are continuing to move towards either 〈1,0〉 or 〈0,1〉.

This result makes sense. Suppose that, in a population of four Nash deliberators on a
cycle, one player moves his state of indecision so that it is very close to 〈1,0〉. As the two
players adjacent to him adjust their states of indecision to shift probability away from Don’t

13 The probabilities existing in the convergent state differ here from the case discussed previously due to
the higher value of the index of caution.

14 The remaining simulations did not converge to six decimal places within 1,000,000 iterations.
15 The reason for the higher value of the index of caution for Bayesian deliberation is simply due to the

fact that the alternate mathematical form requires larger values to slow down the rate at which the state of
indecision changes.

16 Provided that the index of caution is sufficiently high. If k < 5
4 , Nash deliberators may arrive at one of

the periodic orbits of the form identified earlier.
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Swerve, they won’t settle upon the 〈0.385492,0.614508〉 distribution,17 the fixed point dis-
tribution we found earlier, because those two players don’t interact with each other. Instead
they are connected to a fourth player who now has an incentive to move his probability dis-
tribution towards 〈1,0〉, as that is compatible with his neighbors’ gradual adjustment towards
〈0,1〉.

Four players connected via a ring move towards this stable convergent state extremely
rapidly, even if very little asymmetry exists in their initial distributions. One can easily show
that if the state of indecision for all four players is the mixed strategy 〈 1

2 , 1
2 〉, that population

state is a fixed point of the dynamics for both Nash and Bayesian deliberators. However, if
three players have the state of indecision 〈 1

2 , 1
2 〉 and one player deviates from this by a very

small amount, say 10−6, this small asymmetry is enough for both the Nash and the Bayesian
deliberational dynamics to converge to the state where, as we go around the ring, players
adopt the strategies Swerve, Don’t Swerve, Swerve, and Don’t Swerve.

Although a ring with an even number of players may converge to a state where players
alternate between Don’t Swerve and Swerve, this needn’t happen. Figure 6 illustrates how
nonstandard distributions similar to those appearing on a cycle of three players can also
appear on a cycle of eight players. The explanation for this can be determined by considering
again the final configuration of figure 4: although players two and three both interact with an
individual who has adopted the distribution 〈1,0〉, it isn’t necessary for players two and three
to interact with the same individual. The nonstandard distribution would equally well be
stable if they both happened to interact with the same type of individual.
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(a) Initial conditions
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(b) t = 2,300,000

Fig. 6 Chicken played on a cycle of eight with Nash deliberators having an index of caution of 25.

And, indeed, that is what happens in figure 6. Player 1 adopts the nonstandard distribu-
tion 〈0.614508,0.385492〉 (as does player 2), interacting with player 8 whose distribution
is effectively 〈0,1〉. Although player 2 does not interact with 8, he does interact with 3,
whose distribution also effectively equals 〈0,1〉. The distributions of 3 and 8 are sufficiently
close to being the same that the outcome produced is a stable nonstandard deliberational
equilibrium.

Given this configuration, we know from our earlier proof that players 1 and 2 will not
switch their strategies as long as players 8 and 3 do not. Moreover, we know that players
8 and 3 will not switch strategies because they are both connected to players who assign
probability 1 to Don’t Swerve. Lastly, notice that the configuration of players 4, 5, 6, and 7

17 Assuming that the index of caution is 25.
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Billy
Boxing Ballet

Maggie
Boxing (2,1) (0,0)
Ballet (0,0) (1,2)

Fig. 7 The game of Battle of the Sexes.

80.7, 0.3<

80.7, 0.3<

80.7, 0.3<

80.4, 0.6<

80.4, 0.6<

80.4, 0.6<
(a) Initial conditions

81., 0<

81., 0<

81., 0<

80.4134, 0.5866<

80, 1.<

80, 1.<
(b) t = 1,000,000

Fig. 8 Battle of the Sexes played by
Nash deliberators (k = 25) on two cy-
cles connected by a bridge edge (val-
ues rounded to the nearest 10−4).

is just the opposite of that of players 1, 2, 3, and 8; hence the overall population state is
stable under the Nash dynamics.

4. Battle of the Sexes

Turning now from anti-coordination to coordination games, consider the game of Battle
of the Sexes as defined by the payoff matrix in figure 7. Simulations of the deliberational
dynamics for both Nash and Bayesian deliberators on a cycle of length three reveal that,
on that simple network, the population will coordinate on either All Go Boxing or All Go
To The Ballet. It is also straightforward to predict which of these two outcomes will come
about: look at the total aggregate probability assigned to Boxing and Ballet in the states of
indecision for the population. Whichever activity has more probability assigned to it will be
the activity the population converges upon.

The predictive success of that rule depends on the topology, though. Consider a graph
defined by the sequence of edges 1→ 2→ 3→ 1, 4→ 5→ 6→ 4 and 1→ 4 (see figure 8).
If each player in the left “lobe” of graph has the state of indecision 〈.7, .3〉 and each player in
the right “lobe” has the state of indecision 〈.4, .6〉, the total aggregate probability assigned to
Boxing in the population is 3.3, with Ballet receiving an aggregate of 2.7. Yet if each player
is a Nash deliberator with an index of caution k = 25, the left lobe converges to Boxing and
most of the right lobe converges to Ballet. This makes sense, given the topology, but it also
shows that the predictive rule which works on a simple cycle fails to work here.

It’s worth investigating what happens on more realistic and complex social networks.
Consider, then, the following sequence of simulations: for one thousand trials, generate a
random directed graph gi consisting of twenty vertices, and a random assignment of states
of indecision 〈pi1 , . . . ,pi20〉 to each vertex in gi.18 Then, for each of these initial conditions,
calculate the state resulting from stepping the model forward 1,000,000 iterations under the
Nash dynamics. Then do the same thing, except under Bayesian dynamics.

18 The random graphs were generated using the following procedure: each of the 190 possible edges had a
20% chance of being included. If the resulting graph was connected, it was used; if the resulting graph was
disconnected, it was thrown out and a new candidate was generated. The same graph was used for the ith trial
for both Nash and Bayes deliberators, as well as the same initial conditions.
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Nash Bayesian
All Go Boxing: 492 482

All Go To Ballet: 507 512
Nonstandard: 1 6

Fig. 9 Comparison of outcomes for Nash and Bayes deliber-
ators on one thousand random networks, beginning with the
same initial conditions.

80.9999, 0.0001<

80.4134, 0.5866<

80, 1.<

80.4134, 0.5866<

80, 1.<

80, 1.<

80, 1.<

80, 1.<

80, 1.< Fig. 10 Nonstandard deliberational
outcome for Battle of the Sexes
played on a 3× 3 lattice with Nash
deliberators k = 25. The states of
indecision here were obtained after
1,000,000 iterations. (Probabilities
rounded to nearest 0.0001.)

Nash Bayesian
All Go Boxing: 123 280

All Go To Ballet: 149 276
Nonstandard: 728 444

Fig. 11 Comparison of outcomes for Nash and Bayes delib-
erators playing Battle of the Sexes on a 3×3 lattice.

Figure 9 tabulates the outcome of this sequence of simulation. Given that figure 8(b)
shows that a connected graph may fail to converge to a state where complete agreement
exists on the activity, it is somewhat surprising that an entire population of Nash or Bayes
deliberators manages to coordinate upon either Boxing or Ballet the vast majority of the
time. What the statistics don’t reveal, though, is the extent to which the deliberational dy-
namics can lead to divergent outcomes. When both Nash and Bayes deliberators converged
to a state of All Go Boxing or All Go to Ballet, they disagreed on the deliberational equilib-
rium 70 times.

It is difficult to draw a general lesson concerning coordinated action by rational deliber-
ators in a networked environment from the examples discussed so far. We have seen that the
deliberational dynamics can converge to a globally coordinated outcome, instead of some
nonstandard outcome, on both regular structures (like a cycle of length three) or on random
structures (like the one thousand randomly generated graphs). However, there are graphs
which generally discourage both Nash or Bayesian deliberators from globally coordinating
on an outcome. One example of this is a 3×3 lattice.

Simulations show that, out of one thousand trials run on a 3× 3 lattice, the majority
evolve to a nonstandard deliberational equilibria consisting of some people who opt for
Boxing, some who opt for Ballet, and some whose state of indecision is a mix between the
two. Figure 10 illustrates one of the nonstandard deliberational outcomes, and figure 11 lists
the frequencies with which Nash and Bayesian deliberators arrived at various outcomes. The
point to note is that, although both Nash and Bayesian deliberators are capable of globally
coordinating their behavior on random connected graphs with considerable frequency, they
seem to be incapable of globally coordinating their behavior with anything like the same
degree of frequency on a social structure like a lattice.

5. Conclusion

I said that I would argue for three claims which reveal how allowing for local interactions in
the dynamics of rational deliberation can overturn three claims appearing in The Dynamics
of Rational Deliberation. Let us now retrace why those three claims are true. Regarding the
first, we have seen repeatedly that the convergent state of the deliberational dynamics in
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the local interaction framework defined here may not agree with any of the traditional Nash
equilibrium points of the underlying two-player game.

As for the second claim, we have also seen how, in the game of Battle of the Sexes, a
population of Nash deliberators, each of whom began in the same state of indecision as their
counterpart in a population of Bayesian deliberators might nevertheless arrive at a different
deliberational outcome. Because these deliberational outcomes can be very different in kind,
this demonstrates that it is false that all dynamical rules which seek the good have the same
fixed points (which is true in the ordinary two-person case). Another way to see this is to
reflect on the difference between the Nash and Bayesian dynamics on a cycle of length three
for the game of Chicken: the state 〈1,0〉, 〈0,1〉 and 〈0,1〉 is a fixed point (and an attractor) of
the Bayesian dynamics, but a population of Nash deliberators with those states of indecision
will quickly evolve to the state indicated in figure 4(b).

Lastly, note that the examples here seem to indicate that Bayesian deliberators are better
able to avoid the nonstandard deliberational equilibria which Nash deliberators are prone
to. In Chicken on a cycle of length three, Bayesian deliberators evolve to a state where
one person plays Don’t Swerve and the others Swerve. Nash deliberators, on the other hand,
always arrive at a state where collisions are possible. On 3×3 lattices, Bayesian deliberators
are more likely to achieve global coordination than Nash deliberators. So, although it is
true that Bayesian deliberation “can lead to an equilibrium that is not only improper but
also imperfect”, Bayesian deliberation also seems more capable of achieving an intuitively
reasonable equilibrium in this local interaction setting. The extent to which this is true,
though, needs to be examined more carefully.

Clearly more work remains to be done concerning the local interactions of rational de-
liberation. Some of the results I cite here as the result of simulation should readily admit
a rigorous proof. And it would be nice if some general properties could be discovered en-
abling us to predict which deliberational outcomes will come about given the initial states
of indecision and the underlying network structure. Although it is now nearly twenty years
since the publication of The Dynamics of Rational Deliberation, it is remarkable how much
remains to be extracted from it.

A. Definition of the Nash and Bayes dynamics.

Let M = 〈ri j,ci j〉|ni, j=1 be the payoff matrix for a two-player game with n strategies and let pcol(t) and prow(t)
be the states of indecision for Row and Column, respectively. In these states of indecision, pi

col(t) and pi
row(t)

denote the probability assigned by Column and Row to action i in their state of indecision at time t. Thus the
expected utility for action i for Row at time t is

EU
row

(i, t) =
n

∑
j=1

ri j · p j
col(t)

(with the expected utility for Column defined mutatis mutandis). The expected utility of the status quo for
Row at time t equals

ESQ
row

(t) =
n

∑
i=1

pi
row(t) ·EU

row
(i, t).

Finally, let the covetability of act j for Row at time t be

max
(

0,EU
row

(i, t)−ESQ
row

(t)
)

.
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Given this, the Nash dynamics (also known as the Brown-von Neumann-Nash dynamics) states that individ-
uals revise their state of indecision according to the rule

pi(t +1) =
k · pi(t)+Cov(i)
k +∑

n
j=1 Cov( j)

where k > 0 is an index of caution specifying how quickly an agent revises his or her belief in a single
iteration.

The Bayesian dynamics19 takes a slightly different form:

pi(t +1) = pi(t)+
1
k
· pi(t) · EU(i, t)−ESQ(t)

ESQ(t)

where, again, k > 0 is an index of caution. (In order to ensure that the Bayes dynamics results in a probability
distribution, the payoff matrix needs to be normalized so that the lowest payoff is 0 and the greatest payoff is
1.)

B. Chicken, cycle of period 2.

One can easily prove that the numerically obtained probabilities do form a cycle of period two under the
dynamical rules described above, for the case where k = 1. Suppose that each player adopts the distribution
v = 〈v1,v2〉 for the game of Chicken, where we list the strategies in the order Don’t Swerve and Swerve. We
want to find values of v1 and v2 which, under the Nash dynamics, have the property that 〈v′1,v′2〉= 〈v2,v1〉.

First, note that the expected utility of the status quo for both players is −10v2
1 and the expected utility of

the actions Don’t Swerve and Swerve, are, respectively,−10v1 +5v2 and−5v1. Now, the covetability of each
action is simply the difference between the expected utility of the action and the status quo, if this value is
greater than zero, and zero otherwise. If we assume that the action Don’t Swerve has a nonzero covetability,
then this value is −10v1 +10v2

1 +5v2. If we assume that only Don’t Swerve has a nonzero covetability, then
the new values of v1 and v2 under the Nash dynamics are

v′1 =
v1 +(−10v1 +10v2

1 +5v2)
1+(−10v1 +10v2

1 +5v2)

and

v′2 =
v2

1+(−10v1 +10v2
1 +5v2)

.

The system of equations given by 〈v′1,v′2〉= 〈v2,v1〉 has four solutions, of which only three can be probability
distributions over actions.20 The first solution is the standard mixed strategy Nash equilibrium 〈v1,v2〉 =〈 1

2 , 1
2

〉
; however, this solution must be discarded as well as it does not satisfy the assumption that Don’t

Swerve has a nonzero covetability. The remaining solutions are 〈v1,v2〉 =
〈

1
10 (5−

√
5), 1

10 (5+
√

5)
〉

and

〈v1,v2〉=
〈

1
10 (5+

√
5), 1

10 (5−
√

5)
〉

. Of these, only the first satisfies the assumption that Don’t Swerve has
a nonzero covetability and that Swerve has a zero covetability.

All that remains is to verify that 〈v′2,v′1〉 = 〈v1,v2〉. This can be done by straightforward calculation or
by writing down a set of equations similar to the above and solving it. Note that the numeric approximations
of v1 and v2 are 0.276393 and 0.723607, respectively, which agree with the values found by simulation.

If we consider the generalized Nash dynamics with index of caution k > 0, where a distribution is revised
according to the rule

v′i =
kvi +Cov(vi)

k +∑ j Cov(v j)
,

19 For a discussion of why these dynamics warrant the label “Bayesian”, see Skyrms (1990, pp. 36–37,
165–166).

20 The trivial solution 〈v1,v2〉= 〈0,0〉 has to be discarded for this reason.



15

a similar analysis shows that cycles of length two exist for 5
4 ≥ k > 0. These cycles are given by

v1 =
1
10

(
5−
√

5
√

5−4k
)

v′1 =
1
10

(
5+
√

5
√

5−4k
)

v2 =
1
10

(
5+
√

5
√

5−4k
)

v′2 =
1
10

(
5−
√

5
√

5−4k
)

.

C. The analytic solution for the fixed-point in Chicken on a cycle of length three.

Suppose that player one follows the distribution 〈1,0〉. We need to show that there exist a distribution 〈v1,v2〉
which, when adopted by players two and three, produces a stable state for all three players given the dynamics.
In order for player one to remain at 〈1,0〉, it must be the case that the notional revisions obtained for each
of his pairwise interactions with two and three do not assign any probability to Swerve. If they did, then the
result of averaging the two notional distributions would cause player one to move away from the distribution
〈1,0〉.

What this means is that the covetability of Don’t Swerve and Swerve, for player one, must be zero
when both player two and three adopt 〈v1,v2〉. Now, the expected utility of the status quo is −10v1 + 5v2
for player one, and the expected utility of the actions Don’t Swerve and Swerve are −10v1 + 5v2 and −5v1,
respectively. The covetability of Don’t Swerve is thus zero, and the covetability of Swerve will be nonzero
exactly when v1 > v2. Requiring that player one’s distribution remains unchanged forces, then, that v1 ≤ v2.21

Consider now the notional revision generated for player two in his interaction with player one. (Recall
that player one is Row and player two is Column.) The expected utility of the status quo for player two is
−10v1−5v2. What are the covetabilities of Don’t Swerve and Swerve? The expected utilities of each of these
actions, given that player one currently follows 〈1,0〉, are -10 and -5, respectively. From this we see that Don’t
Swerve has a nonzero covetability for player two if and only if−10+10v1 +5v2 > 0. Given that v1 +v2 = 1,
it is impossible for this inequality to be satisfied and so the covetability of Don’t Swerve for player two is
zero.

If we assume that Swerve has a nonzero covetability for player two, then his notional revision for this
particular interaction will be as follows (we use η i

ab to denote the probability assigned to action i when
player a calculates the notional revision for his pairwise interaction with b):

η
1
21 =

v1

1+(−5+10v1 +5v2)

η
2
21 =

v2 +(−5+10v1 +5v2)
1+(−5+10v1 +5v2)

.

From this, it follows that η1
21 < v1 and η2

21 > v2.
Now consider what happens when player two interacts with player three. When both players use the

distribution 〈v1,v2〉, the expected utility of the status quo for each is−10v2
1. What is the covetability of Don’t

Swerve and Swerve for player two? Well, in order for 〈v1,v2〉 to be a fixed point under the dynamics, it must
be the case that when player two calculates his notional revision for his interaction with player three, he finds
that η1

23 > v1 and η2
23 < v2, because otherwise it would be impossible for the average of the notional revisions〈

η1
21,η

2
21
〉

and
〈
η1

23,η
2
23
〉

to equal 〈v1,v2〉. This means that player two must find that the strategy Don’t
Swerve has a nonzero covetability when he considers his interaction with player three. And, consequently,
that the strategy Swerve has a covetability of zero for his interaction with player three. Hence player two will
calculate his notional revision in this case as follows:

η
1
23 =

v1 +(−10v1 +10v2
1 +5v2)

1+(−10v1 +10v2
1 +5v2)

η
2
23 =

v2

1+(−10v1 +10v2
1 +5v2)

.

One then simply needs to solve the following three equations:

η1
21 +η1

23
2

= v1
η1

21 +η2
23

2
= v2 v1 + v2 = 1

21 Which, of course, agrees with the simulation results.
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and check which solutions satisfy the assumptions made along the way. Of the four solutions, three occur in
the complex plane. The remaining solution in real values is approximately 〈v1,v2〉 = 〈0.385492,0.614508〉,
which agrees with the simulation results. Although of little use, it is worth seeing the complexity of the
analytic solution:

v1 =
19
40
− 1

40

√
1
3

(
243+20 3

√
87
(

18−
√

237
)

+20 3
√

87
(

18+
√

237
))

+

1
20

√√√√√√√√√
1
6

243−10 3
√

87
(

18−
√

237
)
−10 3

√
87
(

18+
√

237
)

+
2163√

1
3

(
243+20 3

√
87
(
18−

√
237
)
+20 3

√
87
(
18+

√
237
))


and

v2 =
21
40

+
1

40

√
1
3

(
243+20 3

√
87
(

18−
√

237
)

+20 3
√

87
(

18+
√

237
))

− 1
20

√√√√√√√√√
1
6

243−10 3
√

87
(

18−
√

237
)
−10 3

√
87
(

18+
√

237
)

+
2163√

1
3

(
243+20 3

√
87
(
18−

√
237
)
+20 3

√
87
(
18+

√
237
))
.
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