3 Dynamic Deliberation: Stability

Since in applications of dynamical systems, one
cannot pinpoint a state exactly, but only
approximately, an equilibrium must be stable to be
physically meaningful.

—M. W. Hirsch and 5. Smale (1974)

The existence of joint deliberational equilibria corresponds to a consis-
tent solution to the joint decision problem of many players. In the last
chapter I discussed conditions under which joint deliberational equilib-
ria exist, under which conditions they correspond to Nash equilibria of
a game, and under which conditions they are reachable by Bayesian
deliberation starting at a completely mixed point of indecision. The last
consideration gives one natural principled motivation for refinements of
the Nash equilibrium concept.

Given the strong simplifying assumptions of this discussion, it is nat-
ural to raise the question of robustness—of sensitivity to small changes
in various aspects of the model. This sort of consideration is a different
kind of motivation for refinements of the Nash equilibrium, one aspect
of which is dramatized in the metaphor of the “trembling hand.” Within
the framework of dynamic deliberation, questions of stability and
robustness can be categorized and investigated with standard tools of
the theory of dynamical systems. In this chapter, I will give some indi-
cations of the directions that such analyses can take.

Dynamic Stability of Equilibria

An equilibrium point, e, is stable under the dynamics if points nearby
remain close for all time under the action of the dynamics.! It is strongly
stable (or asymptotically stable) if there is a neighborhood of e such that
the trajectories of all points in that neighborhood converge to e. The
basin of attraction of a strongly stable equilibrium is the union of all
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trajectories that converge to it. An equilibrium is unstable if it is not
stable. A dynamically unstable equilibrium is the natural focus for wor-
ries about the “trembling hand,” since in this case there is a neighbor-
hood, N, of ¢ such that for every neighborhood, N’, inside N, the tra-
jectory of some point originating in N’ leads outside N. Thus, for a
dynamically unstable equilibrium, confining the “trembles” to an arbi-
trarily small N’ cannot guarantee that the trajectory stays within N.

Let us reconsider the game of Chicken with the Nash dynamics from
this perspective. (I will turn to the effects of varying the dynamics later
in this chapter.) The phase portrait is given in Figure 3.1: the lower right
corner represents probability one that both players swerve; the upper
left represents probability one that neither swerves. The lower left and
upper right corners correspond to the two Nash equilibria in pure strat-
egies: Row swerves and Column doesn’t; Column swerves and Row
doesn’t. These are both strongly stable equilibria. The first has as its
basin of attraction every point to the lower left of the diagonal and the
second has as its basin of attraction every point to the upper right.

Figure 3.1. The Nash dynamics of Chicken with two stable
pure equilibria and an unstable mixed equilibrium
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The mixed equilibrium at [0.5,0.5] is unstable. It is called a saddle-
point equilibrium, since the dynamics carries every point on the diago-
nal to it and every point off the diagonal away from it. Notice that this
is perfect equilibrium, but it is far from being robust under trembles
unless the trembles are somehow conceived as confined to the diagonal.

Pure equilibria can be dynamically unstable. Recall Myerson’s game:

Myerson’s game

C1 C2 C3
R3 -9,-9 -7,-7 -7,-7
R2 0,0 0,0 Sl
R1 1,1 0,0 -9,-9

Of the three Nash equilibria in pure strategies [R1, C1], [R2, C2], and
[R3, C3], both [R2, C2] and [R3, C3] are dynamically unstable under
both the Nash and Darwin dynamics while the proper equilibrium at
[R1, C1] is strongly stable.?

Mixed equilibria can be dynamically stable, and even strongly stable.
As an example we can take Matching Pennies under the Nash dynamics.

Matching Pennies

C1 C2
R2 1,0 01
R1 01 1,0

Here the unique Nash equilibrium of the game is in mixed strategies at
[0.5,0.5]. This is a strongly stable equilibrium under the Nash dynam-
ics,3 with the whole space as its basin of attraction. Trajectories spiral in
as they converge to this point. A typical example is shown in Figure 3.2.

The general phenomenon just described does not depend on there
being no Nash equilibria in pure strategies. Consider the following
example of Moulin (1986):

Moulin’s game

C1 C2 C3
R3 1,3 20 31
R2 02 22 02

R1 31 20 13
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There is a unique Nash equilibrium in pure strategies [R2, C2], but for
each player act 2 is weakly dominated by both act 1 and act 3. If a player
does not assign probability one to the other player’s doing act 2, his own
acts 1 and 3 both look better than his act 2. Consequently, [R2, C2] is
highly unstable. Under Nash dynamics, every point in the interior of
the space of indecision goes to the mixed equilibrium, where each player
gives probability 0.5 of playing act 1 and of playing act 3. The orbits of
Row [0.3, 0.7, 0] and Column [0, 0.7, 0.3] are shown in Figure 3.3.

The last two examples point up a difference between a static and a
dynamic view of stability. In static discussions of game theory, it is often
remarked that mixed equilibria are intrinsically unstable because if your
opponent plays the equilibrium strategy you can do just as well by play-
ing any pure strategy with positive weight in your mixed equilibrium
strategy as by playing the mixed equilibrium itself. The situation
changes if you and your opponent are treated as dynamic deliberators.
In this case mixed equilibria may or may not be dynamically stable, and
each case must be evaluated on its own merits.

Figure 3.2. The Nash dynamics of Matching Pennies
with a stable mixed equilibrium
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Imprecise Priors and Elicitation through Deliberation

QOur idealized model of games played by Bayesian deliberators makes
the unrealistic assumption that at the onset of deliberation precise states
of indecision of the players are common knowledge. It is of interest to
explore the consequences of weakening this assumption, and it can be
weakened in various ways. The prior states of indecision might not be
common knowledge or they might not be precise or both. I will post-
pone discussion of the relaxation of the common-knowledge assump-
tion and concentrate here on imprecise states of indecision.

There are various ways in which imprecise states of indecision might
be modeled. Here I will discuss the computationally simplest alterna-
tive. Instead of taking a player’s state of indecision to be a probability
measure over his space of final actions, I will present it as a convex set

Figure 3.3. Stable mixed equilibrium in Moulin's game
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of probability measures (as suggested by Good, 1950; Smith, 1961;
Kyburg, 1961; Levi, 1974). 1 will focus on the simplest case of two-person
games, where each player has only two possible actions and a player’s
state of indecision is given by a closed interval. If, for example, Row’s
probability of act 2 is to lie in the interval between Row’s upper proba-
bility of act 2 = 0.7 and Row’s lower probability of act 2 = 0.6, then the
extreme probability measure corresponding to Row’s upper probability
of act 2 is p(A2) = 0.7, p(Al) = 0.3, and the extreme measure corre-
sponding to Row’s lower probability of act 2 is p(A2) = 0.6, p(Al) =
0.4. The convex set in question is composed of all probability measures
over the space [Al,A2] that can be realized as a weighted average of the
extreme measures.

How should Row calculate expected utilities given Column’s proba-
bility interval? He should have a set of expected utilities, one corre-
sponding to each possible point probability consistent with Column’s
probability interval. Because of the nature of the expectation, however,
Row need only compute the expected utilities relative to the endpoints
of Column’s interval with assurance that the other point utilities lie
between the endpoints.

How should Row modify his probability sets in the light of new
expected utility sets? He should have new probability sets correspond-
ing to every point reached by applying his dynamical law to a point
chosen from the expected utility set and a point chosen from his old
probability set. But for the Nash dynamics, and a large class of reason-
able dynamical laws to which it belongs, it is a consequence of the form
of the dynamical law that if the old probability of an act, A, is in the
interval between the upper and lower probabilities of the act [call the
two extremes p(A) and p3(A) and the point in between py(A)], and if
the old utility of the act is in the interval of utilities corresponding to the
probability interval [call the utilities U;(A), U»(A), and Us(A)], then the
new probability, p’, is in a new probability interval [that is, p3(A) is
between pj(A) and p3(A)]. It is a consequence of these observations that
Row can achieve the results of point deliberation on every pair consist-
ing of one point from his interval and one from Column’s interval by
performing four point computations on pairs consisting of one endpoint
from his interval and one from Column’s interval. The new maximum
and minimum probabilities of A among the four possibilities form the
endpoints of his new probability for A. The general points made above
continue to hold good mutatis mutandis for numbers of acts greater than
two, with intervals being generalized to convex sets of probability mea-
sures and endpoints being generalized to extreme points. With regard
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to computational tractability, deliberational dynamics, as so far devel-
oped, has a certain affinity for convex set representations of imprecise
probabilities.

In the case of two players each of whom must choose between two
acts, a state of indecision in the interval-valued sense is now represent-
ed as a rectangle in the old space of indecision—the product of Row’s
and Column’s intervals. Points are considered degenerate intervals, and
point states of indecision are special cases of rectangles of indecision. At
the other extreme a player’s interval may be the whole interval [0,1], in
which case we will say that he is totally bewildered, and where the state
of indecision is the whole space, we will say that the players are in a
state of mutual total bewilderment. A rectangle of indecision that the
dynamics maps onto itself is a dynamical equilibrium state.

The area of a rectangle of indecision need not be preserved by delib-
erational dynamics. For example, players may start out with nondegen-
erate interval-valued probabilities and be carried by deliberation to point
probabilities. One might call such a process elicitation of point proba-
bilities through deliberation. It is illustrated in Figure 3.4 in terms of the

Figure 3.4. The Winding Road with interval-valued probabilities
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Nash dynamics applied to a pure coordination game, The Winding
Road. Row starts with a probability interval of [0.6, 0.8] and Column
starts with a probability interval of [0.6, 0.9]. They each converge to a
point probability of one (of driving on the right).

The same process in the case of a game with elements of both com-
petition and coordination is illustrated in Figure 3.5. Here, in the game
of Chicken, we have the orbit of [0.4,0.1], [0.4,0.1] converging to [0,0]
and that of [0.9,0.6], [0.9,0.6] converging to [1,1]. The effect is illustrated
in the extreme in Figure 3.6, where an initial state of mutual total bewil-
derment is carried to the point equilibrium [Defect, Defect] by the Nash
dynamics in Prisoner’s Dilemma.

it is evident that much of our analyses of these games is robust under
generalization to interval-valued probabilities. Let us look at the matter
a little more closely. Let us say that a point equilibrium is here robust
under imprecision if there is a nondegenerate rectangle of indecision
that contains the point and converges to it. Figure 3.6 shows that
[Defect, Defect] in Prisoner’s Dilemma is robust under imprecision.
[Right, Right] and [Left, Left] in The Winding Road and [Row swerves,

Figure 3.5. Chicken with contracting intervals
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Column doesn’t] and [Column swerves, Row doesn’t] in Chicken are all
robust under imprecision. However, the mixed equilibria in these games
are not. For example, consider the mixed point equilibrium at [0.5,0.5]
in Chicken. The orbit of the small rectangle, [0.51,0.49], [0.51,0.49],
explodes to a state of mutual total bewilderment, as does any rectangle
that straddles the separatrix of the point dynamics (the diagonal from
upper left to lower right). The orbits of nondegenerate rectangles that
include the mixed point equilibrium but do not straddle the separatrix
suffer a more modest explosion, as shown in Figure 3.7, where an initial
rectangle of [0.5,0.4], [0.5,0.4] is carried to an equilibrium rectangle of
{0.5,0], [0.5,0].

In the examples given so far the point equilibria that were robust
under imprecision were ones which were strongly stable in the point
dynamics. One might suspect that these notions coincide, but this con-
jecture is shown false by the simple example of Matching Pennies.
Recall that this game has only one Nash equilibrium point at [0.5,0.5]
and that for point probabilities under the Nash dynamics this point is a

2

Figurc 3.6. Prisoner’s Dilemma with contracting intervals




Dynamic Deliberation: Stability 71

strongly stable equilibrium that is an attractor for every point in the
space. If, however, we start with nondegenerate rectangles rather than
points in the joint space of indecision, the situation is reversed. Every
nondegenerate interval explodes to a state of mutual total bewilder-
ment. This is illustrated in Figure 3.8 for an initial rectangle of
[0.51,0.49], [0.51,0.49]. Other nondegenerate rectangles do no better.
Robustness under imprecision is a stronger variety of stability for equi-
librium points than strong stability is in the point dynamics.

The analysis of Matching Pennies for point states of indecision does
not deserve to be called robust under imprecision. What about our anal-
yses of The Winding Road and Chicken? In each of these cases, the pure
Nash equilibria are robust under imprecision. Any rectangle that does
not touch the separatrix diagonal has an orbit that converges to one of
the pure Nash equilibrium points. On the other hand, the mixed Nash
equilibrium poeint is not robust under imprecision and interaction with
the diagonal leads to trouble. How much of the space leads to trouble
depends on how imprecise the players’ priors are. One can get some

Figure 3.7. Chicken with expanding intervals
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idea of the magnitude of the difficulties by putting a grid over the space
of indecision. In a regular grid with 0.1 spacing, ten of the squares strad-
dle the diagonal and eighteen more touch it, for a total of 28 percent
troublemakers. For a spacing of 0.05 about 15 percent are troublemakers,
and for a spacing of 0.01 the proportion of troublemakers drops to about
2 percent.

When analyzed in terms of point priors, The Winding Road and
Chicken were both seen to be situations in which coordination could
arise spontaneously. In fact, in that setting, it seemed to require a mir-
acle for coordination ot to occur. The conclusion that coordination can
occur spontaneously in such situations continues to hold good for
imprecise priors. But the modeling of this section, although still far from
realistic, does give us some reason to expect trouble near the diagonal.
(Exactly what sort of trouble it is depends on what, if anything, bewil-
dered players are supposed to do. See the discussion of interval-valued
probabilities in Chapter 5.) Coordination does not appear quite so effort-
less, and it would be to everyone’s mutual advantage to set up the pre-

Figure 3.8. Intervals explode in Matching Pennies
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deliberational environment to keep players away from the diagonal. For
The Winding Road, a liberal use of street signs might do the trick. Or
consider The Intersection, a sort of attenuated game of Chicken dis-
cussed in Moulin (1986):

The Intersection

Go Stop
Go -10,-10 1,-.1
Stop -.1,1 0,0

A stoplight in the predeliberational environment is a reasonably effec-
tive means for keeping the players away from the diagonal.

Analysis of robustness under imprecision could be developed further,
and imprecision could be modeled in other—perhaps more realistic—
ways. In what follows I will for the most part deal with simpler models
with point probability states of indecision, but I wish to point out that
additional questions of robustness under imprecision are always in
order.

Structural Stability I

Another kind of dynamic stability is of interest. That is the stability of
the location and type of equilibrium points as differential equations are
varied. One way of varying the differential equations keeps the funda-
mental dynamical law the same but varies the payoffs of the game. [ will
illustrate with game-theoretic models of the arms race. Political philos-
ophers often model the arms race as Prisoner’s Dilemma, with the fol-
lowing payoffs:

Prisoner’s Dilemma

Defect Don’t defect

Defect -5,-5 5 —-10
Don't defect -10,5 0,0

Deliberational dynamics inexorably carries every point in the space to
the tragic strong equilibrium of both sides deciding to arm (Figure 3.9).
But, at least in some arms races, some generals and some politicians may
think that the proper model of the arms race is not Prisoner’s Dilemma

SN
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but, rather, Chicken. The disagreement is about the relative values of D
and R in the payoff matrix:

C1 C2
R2 D,D 5R
R1 R,5 0,0
With D = =5 and R = —10 we have Prisoner’s Dilemma; with D =

—10 and R = -5 we have Chicken. With D = R = —10 we have a
structurally unstable transition game, which has the following payoff
matrix and which is plotted in Figure 3.10.

C1 C2
R2 -10,-10 5,-10
R1 -10,5 0,0

Figure 3.9. Nash dynamics of Prisoner’s Dilemma
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Figure 3.10 looks much like the portrait of Prisoner’s Dilemma in Figure
3.9, but there are some subtle changes: there are additional (unstable)
equilibria in pure acts at [0,0] and [1,1] and additional (unstable) equi-
libria in mixed actsatx = 0, y <land aty = 1, x > 0. These equilibria
are indicated in the figure by the bold lines. The equilibrium at [0,1] is
still stable, but it is no longer strongly stable for it is not an attractor for
orbits of the aforementioned mixed equilibrium points. If D is allowed
to creep a little below R, then we have The Birth of Chicken (Figure
3.11), whose payoff matrix is:

The Birth of Chicken

Don’t swerve Swerve

Don’t swerve —10.5,—10.5 5,-10
Swerve -10,5 0,0

Figure 3.10. Transition from Prisoner’s Dilemma to Chicken
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There is now a dramatic change. The equilibrium point formerly at [0,1]
moves down the diagonal and changes from a stable equilibrium to a
hyperbolic one. The equilibria at [0,0] and [1,1] change from unstable to
strongly stable. They are now attractors for the orbits of almost all points
in the space. The former mixed equilibria on x = 0 and on y = 1 have
vanished. We have passed through the “better R than D” bifurcation.
The equilibrium points as a function of decreasing D are plotted in Fig-
ure 3.12.

Other transitions are of interest. Consider a Dove’s model of the arms
race. The Dove may well believe that the payoff in the case of mutual
disarmament is greater than the payoff in the case in which her country
arms and the other doesn’t. After all, arming diverts economic resources
and may tempt her own country’s political leaders into adventures they
had best not undertake. Thus, she thinks that in the payoff matrix

C1 C2

R2 ‘ D,D 5R

R1 R,5 PP
—_—

Figure 3.11. The Birth of Chicken
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P should be greater than 5. Figure 3.13 shows the transition from Pris-
oner’s Dilemma to the Dove model with D = -5, R = =10, P = 5.5.
A tiny window of hope has opened in the lower right corner. It is
bounded by a saddle-point equilibrium on the [0,1]-[1,0] diagonal.
Orbits of points in its interior are attracted to a new stable equilibrium
in the lower right corner. If the players come to this game with enough
prior goodwill to put the initial point in the window, they will be carried
to this equilibrium. This Dove game is also a test of will.

All of these games (and other variations that may suggest themselves
to you) may be more or less reasonable models for arms races in various
specific situations. For those who would model the arms race in this way
it is of real interest to investigate the dramatic changes in deliberational
equilibria that can occur as the payoffs are continuously varied. In the
first place, doing so would give important information as to the robust-
ness of the model. And if the model is accurate, neighborhoods of struc-
tural instability may represent situations of great risk or great opportu-
nity.

One useful concept of structural stability was introduced into the

D=11

D=-10

D=-g

Figure 3.12. The “better R than D" bifurcation
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game-theoretic literature by Kohlberg and Mertens (1986), who call a
Nash equilibrium of a game hyperstable if it is robust under small vari-
ations in the payoffs. Hyperstability can be studied without reference to
the particular dynamics since it depends only on how the Nash equilib-
ria move, and Kohlberg and Mertens did not consider dynamics.? But
from the point of view of deliberational dynamics, hyperstability can be
viewed as a concept for classifying joint deliberational equilibria.

More precisely, a Nash equilibrium, N, is hyperstable if for every ¢
there is a & such that if the pure strategy payoffs are perturbed by less
than 8 there is a Nash equilibrium in the open ball with radius € centered
at N. Not every game has a hyperstable equilibrium, but almost all do.
That is, except for a set of Lebesgue measure zero in the space of pure
strategy payoffs, every normal-form game has a hyperstable equilibri-
um. If a game has only a finite number of equilibria, then one of them
is hyperstable. This sort of structural stability is not unrelated to pre-
vious concerns. Hyperstable equilibria are always proper and perfect
(see Kohlberg and Mertens, 1986; Leal, 1986).

Figure 3.13. The Birth of Dove
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For example, consider Samuelson’s game, in which Darwin can con-
verge to imperfect equilibria:

C1 C2
R2 ~ 11,11 11,11
R1 12,10 9,8

The imperfect equilibria at p(R2) = 1, p(C2) > 0.25 are not hyperstable,
because they cease to be equilibria in the perturbed game:

C1 C2
R2 I 11,11 + ¢ 11,11
R1 12,10 9,8

The perfect equilibrium at p(R1) = p(Cl) = 1 is hyperstable. In fact,
small perturbations in the pure strategy payoffs do not move it at all.

For a somewhat different kind of example, let us reconsider Matching
Pennies. Here there is only one Nash equilibrium: the mixed strategy
where each player gives each of his pure strategies probability 0.5. This
equilibrium is hyperstable. Here small perturbations in the payoffs can
move the equilibrium, but arbitrarily small perturbations move the equi-
librium an arbitrarily small amount.

Considerations of hyperstability, however, tell only part of the story
about the structural stability of equilibria. Recall the transition game
between Prisoner’s Dilemma and Chicken:

C1 C2
R2 -10,-10 5,-10
R1 -10,5 0,0

The Nash equilibria consist of all points with p(C1) = 1 and all points
with p(R2) = 1. Consideration of perturbations in the direction of Pris-
oner’s Dilemma and of Chicken is sufficient to show that equilibria other
than E = [p(R2) = 1, p(Cl) = 1] are not hyperstable. In the direction of
Prisoner’s Dilemma, E does not move; in the direction of Chicken it
moves a little bit in response to small perturbations. However, this
leaves out the fact that E changes its dynamic stability status, under the
Nash dynamics, from strongly stable in Prisoner’s Dilemma to stable but
not strongly stable, in the transition game, to an unstable saddle point
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in Chicken. Furthermore, consideration of asymmetric perturbations
shows that E is not hyperstable either. For any positive €, the perturbed
game given by

C1 2
R2 -10,-10+ ¢ 5,-10
R1 —10 + €,5 0,0

has a unique Nash equilibrium at p(R1} = p(C1) = 1. So the short story
regarding structural stability for the transition game is that there are no
hyperstable equilibria but, as we have seen, there is a much richer long
story to be told.

Structural Stability 11

One can investigate structural stability at a more radical level. Instead
of simply changing the payoffs, one can change the dynamical law. Then
one can investigate which features of the dynamics are robust under
changes of the dynamical laws. For example, let us look once more at
Matching Pennies. In the Nash flow:

dp(A) _ cov(A) — p(A)Zicov(A)
dt 1 + Xcov(A)

In the closely related Brown-von Neumann flow:

dp(A)

e cov(A)2 — p(A)Zcov(A;)?

And in the Darwin flow:

ELI(A) — EU(5Q)
EU(5Q)

dp(A
P - pa

The unique mixed equilibrium at [p(R2) = 0.5, p(C2) = 0.5] is a strongly
stable spiral attractor, having the whole space as its basin of attraction.
If we move to the Aristotelian flow for 2 x 2 games (Skyrms, 1986),
such that
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dp(A2)

= EU(A2) ~ EU(AY)

the vector field changes character, as illustrated in Figure 3.14. The Nash
equilibrium is still stable, but it is no longer strongly stable. The delib-
erators jointly form a harmonic oscillator. The closed orbits are not struc-
turally stable.’ Slight variations in the dynamics can turn them into out-
ward or inward spirals.5

Some games are more sensitive to changes in the dynamics than oth-
ers. Consider a game like Chicken. The vector field looks qualitatively
the same as that illustrated in Figure 3.1 for a wide variety of dynamical
rules.” The curvature of the orbits may vary, but the destinations of the
points remain the same. Every point to the lower left of the diagonal
goes to the Nash equilibrium at the lower left corner; every point to the
upper right goes to the upper right corner. Every point on the (anti)
diagonal (except perhaps endpoints) goes to the saddle-point equilibri-

Figure 3.14. Matching Pennies with Aristotelian dynamics
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um at {0.5,0.5]. We can argue that any reasonable autonomous dynamics
will give this sort of picture.

If the dynamics seeks the good then the qualitative direction of the
flow in the four quadrants of the space of indecision is as indicated in
Figure 3.15. Suppose dp(A;)/dt is a continuous function of the expected
utilities and probabilities of the A;, which assumes the value zero only
if U(A;) = U(SQ) or p(A;} = 1 or 0. Consider a point, p, in the interior
of the lower left quadrant, as in Figure 3.16. The point must move into
the rectangle APBE and cannot ever get out. Draw a horizontal line DC
at p(R1) = 1 ~ &. Within the rectangle APCD, dp(R1)/dt is always posi-
tive since on APBE it is zero only at E. By continuity (a continuous func-
tion defined on a compact set assumes a maximum and a minimum),
dp(R1)/dt is bounded away from zero on APCD. So in some finite
amount of time the trajectory of p moves into DCBE, from which it can-
not escape. A similar argument with respect to dp(Cl1)/dt gets the point
to within € of p(C1) = 1. Since ¢ is arbitrary the trajectory must converge
to the equilibrium, E. The situation in the upper right quadrant is sim-
ilar. The equilibria [Row swerves, Column doesn’'t] and [Column
swerves, Row doesn’t] are thus as stable as you please in all the ways
we have discussed.

Suppose that a point is on the diagonal from upper left to lower right.
Then by symmetry, dp(R2)/dt = dp(C1)/dt, and by a continuity argument
similar to the one above every point except endpoints must converge to

~ L

. ]

Figure 3.15. Four quadrants in Chicken
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the mixed Nash equilibrium at [0.5,0.5]. The situation in the rest of the
upper left and lower right quadrants is only slightly more sensitive.
Consider the triangle consisting of the space below the diagonal in the
upper left quadrant. Drop a vertical line from the diagonal, as shown in
Figure 3.17. On the diagonal, dp(R1)/dt = dp(C2)/dt > 0. At p(R1) = 0.5,

Vv AN N

Figure 3.16. Qualitative analysis of Chicken

Figure 3.17. Below the diagonal in the upper left quadrant
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dp(C2)/dt = 0 while dp(R1)/dt is positive. Let us make the additional
assumption that the direction of the velocity vector as measured by the
indicated angle 6 varies continuously and monotonicaily along this line.
Then, for any point in this region, we can draw a line between it and
the diagonal such that at that line the vector field always points inward.
Since the downward velocity dp(R1)/dt is positive throughout the small-
er triangle thus formed, it must by continuity be bounded away from
zero and in some finite time the trajectory of the point must emerge into
the lower left quadrant, and so be delivered to the lower left equilibri-
um. The remaining cases are similar. Thus the whole qualitative analysis
of Chicken is extremely robust over variations in the deliberational
dynamics.

However, there is one sense in which Prisoner’s Dilemma is even
more robust than Chicken. In the discussion of Chicken, we allowed the
dynamical laws to vary among a wide class but we assumed that in any
particular situation whatever dynamics was being used was common to
the players and common knowledge between them. This extends even
to the index of caution. If Row is a Nash deliberator and Column a Dar-
win deliberator, or even if both are Nash deliberators but one has a
greater index of caution, and if these facts are common knowledge, then
orbits that originate on the diagonal will not stay on it.

In Prisoner’s Dilemma, however, it doesn’t matter. Suppose two play-
ers have two different dynamical rules from the class of rules which seek
the good such that dp(A;)/dt is a continuous function of the expected
utilities and probabilities of the A;, which assumes the value zero only
if L(A;) = U(SQ) or p(4;) = 10r0, and suppose that it is common knowl-
edge that the players have these rules. Then every completely mixed
state of indecision converges to [Defect, Defect).8

This is a consequence of the fact that [Defect, Defect] is the unique
rationalizable strategy. For each player, Defect strongly dominates
Cooperate. So, at each point in the space the velocity toward Defect is
positive for each player. Then, by an argument like that used regarding
the lower left quadrant of Chicken, the players will converge to [Defect,
Defect].

In a reversal of the analogy, the pure equilibria of Chicken each have
a neighborhood in which the vector field looks qualitatively like that of
Prisoner’s Dilemma. They are strong equilibria in the sense of Harsanyi
(1973a). At the equilibrium each player’s strategy is her unique best
reply. By continuity of expected utilities as a function of probabilities, a
Harsanyi-strong equilibrium should have a neighborhood within which
each player’s equilibrium strategy is still her unique best reply. Then it
should be strongly dynamically stable in any reasonable dynamics. By
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continuity of expected utilities as a function of utilities of pure strategies,
it should be hyperstable. In fact, Harsanyi-strong equilibria appear to
possess all the local stability properties that one might desire.’

Our three examples of this section illustrate common qualitative pat-
terns in 2 X 2 two-person games. If we consider the space of all such
games, as defined by their payoffs, the cases where two payoffs in the
game matrix are exactly equal has Lebesgue measure zero. If we neglect
these, there are—up to symmetry—essentially the four qualitative situ-
ations depicted in Figure 3.18. The first situation is illustrated by Match-
ing Pennies, the second by Chicken and Battle of the Sexes, and the
third by Prisoner’s Dilemma.!® We haven’t met an example of the fourth
situation, but it is much like Prisoner’s Dilemma in that the game is
solvable by iterated elimination of strictly dominated strategies. C1
strictly dominates C2. When C2 is eliminated, R2 strictly dominates R1.
Thus the unique Nash equilibrium is the unique rationalizable strategy.

I do not want to claim that games with Lebesgue measure zero have
probability zero of occurring in the real world. There are reasons why
we do have games where some payoffs equal others, and so such games
are of practical as well as theoretical interest. But the foregoing at least
gives some reason to believe that the examples to which we have devot-
ed so much attention are not completely atypical.

Stability and Rationality

In Chapter 2 we saw how the Nash equilibrium concept arises naturally
in the context of games played by bounded Bayesian deliberators. A
refinement of the Nash equilibrium concept also arises naturally, that of
a joint deliberational equilibrium to which deliberation starting in a com-
pletely mixed state of indecision can converge. This concept is related
to the notions of perfect and proper equilibrium discussed in the game-
theoretic literature, but it is not identical with either. It does not depend
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Figure 3.18. Typical 2 x 2 games
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for its interest on any irrationality on the part of the players, although
it does depend on their limited computational resources.

In this chapter we surveyed various types of stability and robustness
that arise naturally in the context of the dynamics of rational delibera-
tion. These are related to game-theoretic notions of “strategic stability,”
which are often discussed in terms of a little irrationality on the part of
the players. But I think that the types of stability we have surveyed can
also be motivated without any presumed irrationality. In Chapters 4 and
5 1 will examine just what rationality in these contexis entails.

In a situation where deliberation costs something, deliberation will
often be terminated close to but short of a Nash equilibrium. The first
theoretical question arising from this consideration concerns the dynam-
ic stability of deliberational equilibria. It is at least arguable that interval-
valued priors do not entail any irrationality (see Smith, 1961; Good,
1950; Levi, 1974; Kyburg, 1961), in which case robustness under impre-
cision is of interest even when rationality is common knowledge. Uncer-
tainty and/or imprecise knowledge about the payoffs of the game is suf-
ficient motivation for concern with the first kind of structural stability
we have discussed. Structural stability under variations of the dynami-
cal law are of obvious interest, since in our framework there is no unique
rational dynamic law.

There are many interrelations between the various types of stability
flowing from the deliberational dynamics, and between these and the
many kinds of refinement of the Nash equilibrium that have been intro-
duced in the game-theory literature. Some of these have been pointed
out along the way, but we are far from having the whole story.!! It
appears that the framework of dynamic deliberation not only provides
a rationale for the concerns of classical game theory, but also suggests
fertile areas for new investigations.




