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ABSTRACT. We formalize Jeffrey's (1983) notion of ratifiability and show that the 
resulting formal structure can be obtained more directly by means of a theory of 
counterfactual beliefs. One implication is that, under the appropriate formalizations, 
together with certain restrictions on beliefs, Bayesian decision theory and causal decision 
theory coincide. 
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1. I N T R O D U C T I O N  

In the second edition of his monograph, Jeffrey (1983) proposes the 
notion of ratifiability as a criterion of rational choice, intended to 
encompass (and supersede) his earlier theory (Jeffrey, 1965). 
Ratifiability is a type of stability of decision. In his own words, 

The notion of ratifiability is applicable only where, during deliberation, the agent finds it 
conceivable that he will not manage to perform the act he finally decides to perform, but 
will find himself performing one of the other available acts instead . . . .  The option in 
question is ratifiable or not depending on whether or not the expected desirability of 
actually carrying it out (having chosen it) is at least as great as the expected desirability 
of actually carrying out each of the alternatives (in spite of having chosen to carry out a 
different option, as hypothesized). [Jeffrey (1983), pp. 18-20] 

However, Jeffrey's discussion is somewhat brief, and it is more 
suggestive than systematic, relying as it does on examples. This leaves 
open some tantalizing questions. For example, what lies behind the 
apparently paradoxical claim that a theory of rationality rests on a 
degree of fallibility on the part of the decision maker? Also, how is 
ratifiability related to other theories of decision and to standard 
game-theoretic solution concepts? 

This paper is devoted to a formal investigation of the notion of 
ratifiability in an attempt to address some of these issues. Broadly, we 
take on two tasks. 
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(i) We formalize Jeffrey's notion of ratifiability and investigate the 
game-theoretic structure which emerges. This exercise has its own 
rationale, but its main role is to provide a backdrop for our second 
task. Namely, 
(ii) we provide an alternative characterization of ratifiability in terms 
of counterfactual beliefs. We develop the theory of counterfactuals due 
to Stalnaker (1968) and Lewis (1973), and show that the formal 
structures obtained in (i) can be obtained more directly via the notion 
of counterfactuals. 

Throughout this paper, the game-theoretic solution concept of corre- 
lated equilibrium (Aumann 1974, 1987) plays the key role. The formal 
structures which emerge from ratifiability and from our theory of 
counterfactuals both coincide with the notion of correlated equilib- 
rium. These representations form the basis of our reconstruction of 
ratifiability in terms of counterfactual beliefs. 

The outline of the paper is as follows. In Section 2, we present a 
particular formalization of the notion of ratifiability and show that the 
resulting structure coincides with the notion of correlated equilibrium 
(Theorem 1). In Section 3, we present a theory of conterfactuals in 
games. We motivate the discussion with an example, and then present 
the general theory. Our second result (Theorem 2) shows that the 
formal structure we obtain coincides with that in Section 2. This 
representation theorem constitutes our reconstruction of ratifiability by 
means of counterfactual beliefs. Section 4 sums up our discussion. 

2. FORMALIZING RATIFIABILITY 

We shall conduct the discussion in terms of a two player normal form 
game. This allows us to formalize the notion of ratifiability in a 
perspicuous way and focus attention on substantive issues of interpre- 
tation. A one-person decision problem is construed as a game between 
the decision maker and Nature. 

2.1. The G a m e  G 

Let G := (S 1, S 2, h a, h 2) be a two-player normal form game, where S i is 
player i's strategy set and hi: S 1 • $2---* ~ is player i's payoff function. 
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We assume that both S 1 and 8 2 a r e  finite, with K 1 and K 2 elements 

respectively. We denote by sij the j th  strategy of player i. For the rest 
of this paper, we shall follow the notational convention of denoting 
individuals by superscripts, and strategies by subscripts. The 
superscript " - i "  refers to player i's opponent. 

2.2. The State Space 0 

We define a set of propositions �9 consisting of the following proposi- 
tions. 

D~ := "player i decides to play s~ 

i,, 
P~ := "player i performs s k 

where i ranges over {1, 2} and k ranges over { 1 , . . . ,  K~}. ~ has 
2(K 1 + K 2) elements. 

Consider a function 0 : xtr--+ {0, 1}. We say that 0 is a state if, for all 
i, k and l # k ,  

(2.1) O(D~)=Ir and o(pik)=lC=>O(Pi)=O 

A proposition q is true at 0 if 0(q) = 1. q is false at 0 otherwise. 
Denote by | the set of all states. O has (K1K2) 2 elements. Define the 
following subsets of | 

(2.2) 
( 0 1 0 ( G )  = 1} 

g "= {0 [ O(P~)= 1} 77" k �9 

~ is the event that i decides to play i i sk, and ~r k is the event that i 
performs s~. By construction, these events do not coincide, and we 
leave open as a logical possibility the divergence between decisions and 
performances. The mnemonics of " 3 "  for "decision" and " & '  for 
"performance" should help the reader keep track of the notation. 

Let A i := {6~} and H i := {~r~}, where k ~ {1 . . . .  , K i } .  By (2.1), 

both Ai and IY partition | Denote by A the meet of the partitions h 1 
and A 2 and by II the meet of the partitions II 1 and II 2. Equivalently, 
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(2.3) 
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A ' =  (61 i " ' 1 8 2 1 8 1 E A  1 and 8 2 ~ A  2} 

I I  : =  {"/T 1 f") 'iT 2 [ 7T 1 E I I  1 a n d  r r  2 ~ I I  2 } 

2.3. e-Ratifiability 

Suppose player i has a probability distribution p over @. We define the 
real-valued function H i as follows�9 

K-i 

(2.4) H*(k I J)"= Z p(Trti l 8) N ~rik)hi(s~, S; i) 
/=1 

Hi( k I J) is the payoff expected by player i when he decides on sij but 
i i i Hi(k ] j) is defined whenever 6j (~ Irk is non-null under p. plays s k . 

Let some e > 0 be given. We take e to be small. In particular, 
�9 i e < mln~{1/K }. Consider the following conditions on p. 

(A1) p(rrij 

(A2) p(7/  

(A3) HJ(j 

6 ~) = e Vj :/: k, whenever defined 

ai n 6 - i ) - - p ( r / I  a i) V,r i, a i, a-;, 
whenever defined 

J) >1 Hi(k l j) Vj, k, whenever defined 

(A1) formalizes the existence of trembles of size e so that, given a 
decision to play a certain strategy, each of the other strategies may be 
performed with probability e. (A2) states that such trembles are 
independent of the opponent's decisions. (A3) formalizes the ddibera- 
tional stability condition�9 It states that given i's decision to play s~, he 
cannot do better by performing some other strategy�9 

D E F I N I T I O N  1. p is e-ratifiable for i if p satisfies (A1), (A2) and 
(A3). 

Note that we have applied the term "ratifiable" to the probability 
distribution p itself rather than to particular actions�9 The rationale for 
this is that p specifies, among other things, the decisions of the 
individual. 
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The notion of e-ratifiability is very close in spirit to Jeffrey's own 
informal discussion of ratifiability. However, the prescriptions deli- 
vered by the notion of e-ratifiability will depend on the particular e 
chosen. For any particular decision problem, the notion of e-ratifiabili- 
ty will specify a whole family of prescriptions, depending on what 
value of e is chosen. Arguably, this is a shortcoming. The motive for 
introducing trembles at all was merely to avoid attaching probability 
zero to any act. The precise magnitude of such trembles should play no 
part in the analysis. Rather,  what matters is that such trembles exist, 
and that they be "small".  

An elegant way of overcoming this sort of problem is a method used 
by Selten (1975) in which we work with those tremble-flee distribu- 
tions, i.e., those distributions with e = 0, which can be obtained as the 
limit of a sequence of distributions with trembles. 

2.4. Modest Ratifiability 

Consider the following condition on p. 

(A4) p(~.~-i) = p(62~), Vk 

We say that p is modest for i if it satisfies (A4). When i has a modest 
distribution, he believes that his opponent is not susceptible to trem- 
bles. The notion of ratifiability we employ is the following. 

DEFINITION 2. p is modestly ratifiable for i if there are sequences 
(p , )  and (e,)  such that, for all t, p, is modest for i and e,-ratifiable for 
i, and p, ~ p as e, ~ 0. 

We say that p is modestly ratifiable if p is modestly ratifiable for both 
players. 

2.5. Correlated Equilibrium 

Our first result is that the class of modestly ratifiable distributions 
coincides with the class of correlated equilibrium distributions. We 
begin by reviewing the notion of correlated equilibrium. Let p be a 
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tremble-free distribution on O, i.e. one for which p(6~) = p(Tr~) for all 
i and k. In such a case, p defines an unambiguous distribution/7 over 
the strategy set S ~ x S 2. Define: 

(2.5) 6i(ll j):= p(6;-i[ 6~). 

The distribution/7 over S 1 x S 2 is said to be a correlated equilibrium 
distribution if, for all i, j and k whenever c~i(l ] j) is defined, 

K i 

( 2 . 6 )  E &(l l j)[h'(s'j, - i  i i - h ( s k ,  0 S, ) s ; i ) ]  ~ �9 
l=l  

The notion of correlated equilibrium is due to Aumann (1974, 
1987), and has the following interpretation. Suppose there is an 
impartial arbitrator who administers an experiment in which a random 
outcome is observed. The space of outcomes is the strategy set S 1 x S 2, 
and both players know the distribution of probabilities over this set. 
However, only the arbitrator can observe the actual outcome of the 
experiment. When the arbitrator observes the outcome s = (s 1, s2), he 
recommends to player 1 that s 1 should be played, and recommends to 
player 2 that s 2 should be played. Crucially, one player does not know 
the recommendation made to his opponent. A probability distribution 
over S ~ x S 2 is a correlated equilibrium distribution if no player can 
achieve a higher expected payoff by departing from the arbitrator's 
recommendations, given that his opponent heeds the recommenda- 
tions. 

We illustrate this concept with an example. Consider the following 
g a m e -  the familiar "chicken game". 

L R 

T 6,6 2,7 

B 7,2 0 ,0  

There are three Nash equilibria in this game. Namely, (T, R), 
(B, L) ,  and a mixed strategy equilibrium in which each player receives 
42 . However, both players can receive an expected payoff of 5 if they 
agree to the following coordination scheme. Before the game is 
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played, they appoint an impartial arbitrator who will administer an 
experiment in which a fair die is cast. The arbitrator then issues 
suggestions to each player on which action should be performed. A 
player only hears his own message and can only make probability 
judgements about the likely messages received by his opponent. The 
rule followed by the arbitrator is as follows: 

Outcome Suggestion to 1 Suggestion to 2 

1 or 2 play T play L 
3 or 4 play T play R 
5 or 6 play B play L 

It can readily be verified that neither player obtains a higher payoff 
by departing from the suggestions (given that his ~pponent follows the 
suggestions). For example, ff player 1 is recommended to play T, he 
infers that the outcome of the die is in {1, 2, 3, 4}. Conditional on this 
information, he infers that player 2 has been suggested L and R with 
equal probability. Thus, on the assumption that 2 follows the arbitra- 
tor's suggestions, if 1 plays T his expected payoff is �89 (6) + ~ (2) = 4, 
whereas if he departs from the suggestion and plays B, his payoff is 
�89 (7) + �89 (0) = 3 �89 By following the mechanism above, both players can 
expect a payoff of 1(7) + ~ (2) + 1(6) = 5, which exceeds the maximum 
symmetric payoff obtainable as a Nash equilibrium. 

On a point of terminology, when p is a correlated equilibrium 
distribution, we shall simply refer to p as a correlated equilibrium. 

THEOREM 1. p is modestly ratifiable i f  and only if  p is a correlated 
equilibrium. 

The proof of this and all other theorems appear in the appendix. For 
now, we remark on the interpretation of modest ratifiability supplied 
by the notion of correlated equilibrium. The distinction between 
decisions and performances is exactly analogous to the distinction 
between the recommendations issued by the arbitrator and the actions 
taken by the players. Notice the crucial role played by the assumption 
that p is shared by both players. Without it, we could not obtain an 
equilibrium. 
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In addition to the interpretation supplied by the notion of correlated 
equilibrium, we can draw on the discussions of the properties of 
correlated equilibrium (as in Aumann, 1974), and translate them 
directly into the idiom of ratifiability. Thus, when p is modestly 
ratifiable we have the following corollaries. 

(i) No player will place positive probability on a strictly dominated 
strategy. (So that, in Newcomb's problem, both boxes are taken, and 
in the prisoners' dilemma, the players confess.) 

(ii) In a two-person zero-sum game, the payoffs achievable by modest 
ratifiability cannot exceed the "value" of the game. 

(iii) However, in non-zero sum games, the payoffs achievable by 
modest ratifiability can exceed the payoffs achievable as a Nash 
equilibrium (as in our example above). 

3. C O U N T E R F A C T U A L S  A N D  G A M E S  

In this section, we shall develop the Stalnaker-Lewis approach to 
counterfactuals by constructing a framework which supplies a determi- 
nate criterion for similarity of possible worlds. Specifically, by con- 
structing a possible worlds space for a given normal form game, we 
shall capture the notion of similarity by means of a metric on this 
space. Thus, two possible worlds are "similar" if the distance between 
them is "small". This approach to the analysis of counterfactuals seems 
particularly suited to game theory, since the subject matter of game 
theory (strategies, payoffs, and probabilities) supplies some very natur- 
al metrics on the space of possible worlds. We exploit this to the full. 

A flavour of our approach can be conveyed by the diagram below. 
is the set of possible worlds, ]Pl is the subset do at which the 
proposition p is true, and I q] is the subset of q~ at which the 
proposition q is true. Suppose q~ is the true world, and we are 
concerned with the truth or falsity of the counterfactual; "if p were the 
case, q would be the case". We denote this counterfactual by p ~ q. 

We implement the Stalnaker-Lewis criterion by introducing a metric 
m on q~. We identify the closest possible world to q~ in this metric in 
which p is true, and see whether q is also true there. If so, then 
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p ~ q is true at r Otherwise, p ~ q is false at r In Figure 1, the 
closest possible world to ~p in which p is true is ft. But q is also true at 
~. Thus, we conclude that p G-~ q is true at ~. 

This account is only intended to be suggestive, and cannot be a 
rigorous definition, since there may be more than one "closest" 
possible world. Our formal definition will be to say that p ~ q is true 
at q~ if and only if, there is a closed sphere C around q in the metric m 
such that C n [ p [  is non-empty and C n [ p [  C_ ]q[. 

The counterfactuals which will be of particular interest to us are 
those of the form; "if  player i were to play strategy x, his payoff would 
be higher". When the truth value of these counterfactuals are known, 
a natural rationality criterion suggests itself. Namely, a player should 
never find himself at a possible world at which, according to his metric 
m, his payoff would be higher if he were to deviate. This is the 
principle which motivates our rationality criterion. 

We motivate our general theory with the chicken game introduced in 
the last section. We define the state space 12 for this game to be the set 
{o)a, wtr, Wbl, OObr}, where wtl is the state in which i plays T and 2 plays 
L, O)tr is the state in which 1 plays T and 2 plays R, and so on. We shall 
suppose that each player has a partition of 12 so that, at any state, a 
player knows his own action, but cannot exclude any action on the part 
of his opponent. For this, the players' partitions ~1 and ~2 must be as 
in Figure 2. 

We suppose that each player has a prior probability distribution p 
over ~ ,  and forms beliefs by conditioning on the element of his 
partition which contains the true state. In particular, a player attaches 
probabilities to propositions of the form; "player i plays strategy s". 

Fig. 1. 
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J ~ 2  

~tl ~tr 

~bt ~ 

~tl ~tr 

~bl ~br 

Fig. 2. 

etL ~~ 

ebt Wbr 

For example, if player 1 has the prior distribution p given by: 

p(oJa) = p(OJtr ) = p(a)bt ) = 1/3,  

then at %t, he has the following probability beliefs. 

(i) T is played with probability 1. 

(ii) L is played with probability 1/2. 

(iii) R is played with probability 1/2. 

More succinctly, we can combine (ii) and (iii) to give the proposition: 

(ii)' Player 2 randomizes (1/2, 1/2) over his strategy set. 

In general, at any state w E 12, each player attaches probability 1 to 
one of his own actions, and believes that his opponent randomizes with 
some pair of probabilities. For player i, we represent these beliefs by 
the pair (x, y ) ,  where x is a pure strategy of i, and y is a probability 
distribution over the strategies of i's opponent. The interpretation of 
the pair (x, y)  is that, player i attaches probability 1 to his own 
strategy x, and believes that his opponent randomizes with distribution 
y. For example, player l's beliefs at the state oh1 is represented by the 
pair (T, x) ,  where x is the randomization (1/2, 1/2). The set of all 
such pairs for player 1 is given by the product {T, B} x N, where N is 
the one-dimensional unit simplex representing the set of all probability 
distributions over {L, R}. 

We shall define { T, B} • 5 to be player l's possible  worlds space,  
and denote it by �9 1. We denote by q~ a typical element of this set, and 
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p r o f L  t 

pr o f  L 

1 +q ' i~  1 0 

V I - - ~ x  ~ 
0 1 1 -t- '1~ 

pr o f  R 

Fig. 3. 

call it a possible world for player 1. Geometrically, we can represent 
~1 as in Figure 3. I~ 1 is represented by the two parallel bold lines. The 
upper line is the set {T} • 5,  while the lower line is (B} • 5. As we 
move toward the top left hand corner, the probability of L increases, 
and as we move toward the bottom right hand corner, the probability 
of R increases. The reason for this particular representation will 
become clear below when we introduce a particular metric on this 
space. 

Given a prior probability distribution p for player 1, we can define a 
function /31 f b - ) { T ,  B} • 5 such that /31(o)) represents the beliefs 
held by player 1 at ~o. When/3~(w) = ~p, we shall use the metaphor; "at 
to, player 1 believes he is at the possible world ~" .  In Figure 4, we 
show the image of the function 131. 

Each possible world ~ in 1~1 determines a unique action for player 1 

p r o f L  T 

I pr  o f  R 

pr o.f L 

l-r I~2 1 i/2 0 

0 1 1§ 1 ~  

I~r o f  R --~ 

Fig. 4. 
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and a unique probability distribution over 2's actions. Hence, each q~ 
determines an expected payoff for player 1. This is shown in Figure 5, 
where Hi(q0 denotes the expected payoff of player 1 at q~. 

Having thus defined the possible worlds space for player 1, the next 
step is to introduce a metric on this space which has the interpretation 
of player l 's "theory of the world". Each point in ~b 1 is a pair (x, y>, 
where x is either Tor  B and y = (Yl, Y2> E [~2, where ya + Y2 = 1. For 
any two points (x, y) and (~,)7) in ~1, define the distance between 
them as: 

2 1 '2  

[ i_~ 1 q l / 2  [Yi- ffileJ + 1 

if x = . ~ ,  

if x#~7.  

Geometrically, this metric could be dubbed the "library stack metric". 
Refer to Figure 6. 

Imagine the two bold lines representing qb a to be two parallel 
corridors in a library. There are stacks of shelves at right angles to the 
corridors. In order to get from one point in the library to another, one 
must follow the corridors and the spaces between the stacks. Thus, for 
example, the distance between ~ and ~ in Figure 6 is the sum of two 
distances - between ~ and ff (which is 1) and between ~b and ~ (which 
is the Euclidean distance between ff and if). We denote this metric by 
A. As we shall see below, the general version of this metric plays a 
prominent role in our discussion. 

H'(~) 

! 3 

Fig. 5. 

~r of L 

1..}- I~ 1 

profL ! 1 ~  

0 1 
pr of R -4 

Fig. 6. 

0 

I pr o)' R 

1 

1 +4i-fi 
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Given a player's possible worlds space and his metric, we have the 
apparatus to analyse the counterfactuals entertained by that player. 
Refer to Figure 7. Suppose player 1 believes that he is at the possible 
world 9. At 9, 1 plays T, and his payoff is 4. We are interested in the 
counterfactual; "If player 1 were to play B, his payoff would be 
higher". To evaluate this counterfactual at q~, we find the closest 
possible world(s) to q~ at which player 1 plays B, and see whether l 's 
payoff is higher here than at q~. As we see in Figure 7, there is a unique 
closest possible world in which 1 plays B -  namely, ~. But at if, l 's 
payoff is 3.5. Thus, according to our criterion, the above counterfac- 
tual is false at 9- 

Next, refer to Figure 8. Suppose player 1 believes he is at the 
possible world ~0. His action at ~0 is B, and his~payoff at ~0 is 7. The 
closest possible world to ~0 in which 1 plays T is ~0, and his payoff there 
is 6. Thus, the counterfactual "If player 1 were to play T, his payoff 
would be higher" is false at t). 

This suggests a very natural rationality criterion for player 1. Name- 
ly, that he should never find himself at a possible world at which, 
according to his metric A, he would be strictly better off if he were to 
deviate. We give the formal definition of this rationality criterion 
below. For now, notice that this criterion is satisfied by player 1 in our 
example, since 

=- t( '~ = 9 ,  

t 3 1 ( , o b , )  =- =- q , ,  

pro.eL T 

*-- pr  o f  L 

1 q - ~  1 I/2 0 

I ~ i I pr o.r R 

o + i-Ii7~ 
pr of R - ~  

*-- pr oS L 

1 4 - 1 ~  1 0 

0 l 

p r o . e L  T 

t pr  o f  R 

1 

pr of R ~  

Fig. 7. Fig. 8. 
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and we showed that both q~ and 0 satisfy the rationality requirement 

sketched above. 
Let us now proceed to make precise the concepts introduced above. 

The order of the discussion follows the discussion above, except that 

we consider the n-person case. 

3.1. The Game G 

Let G be a game in normal form between n players. G = (S, h) ,  
where S = X n S ~ and h = (h  1, h ~) S i is player i's strategy set, 

i = 1  " " " ' " 

and h i is his payoff function hi: S--~ R. We assume that each S / is finite 
and has K i elements. Denote by s~j the j th  strategy of player i. Let  
K := 177= 1 K/, so that S has K elements. Denote by S -i the product 
S 1 x S 2 x . . .  x S i -1  x S i+l x . . .  x S n. S -1  has K / K  ~ elements. We 

order this set in some well-defined manner by the index set 
{1, 2 , . . .  , K - i } ,  where K - i  = K / K  i. Thus, S -1 = {Sl  i, s2 i, . . . , SKii}. 

3.2. The State Space f~ 

With each strategy n-tuple s E S, we associate a unique state to. The set 
of all such states is the state space II. Then we can define a function 
s :  12---~ S such that s(to) is the strategy n-tuple associated with to. The 
function s is therefore the n-tuple (s 1, s 2 , . . . ,  s") ,  where s i is the 
function s i" 1)---~ S i such that si(to) is the strategy of player i associated 
with the state to. We denote by S - i  the (n 1)-tuple <S 1, i-1 - -  . . . , S  , 

i + l  . ~ i  s , . . . ,  s n) Let be the partition of f~ generated by the equiva- 
lence relation ___i defined as; to =i to,<=>s/(to)= si(to,). We denote by 
pi(to) the element of ~ i  containing the state to. Finally, each player i 
has a probability distribution pi over 12. 

3.3. The Possible Worlds Space doe 

For each player i, we define his possible worlds space dO e as the product 

( 3 . 1 )  @ i  . _ ~  S i x m ( s - i ) ,  

where A(S -/) is the unit simplex of dimension K - g -  1, representing 



JEFFREY'S NOTION OF RATIFIABILITY 35 

the set of all probability distributions over the set S -i. An  element of 
qb i will be called a possible world, and be denoted by q~. In turn, 
q~ = (q i, q - i ) ,  where q~i is the projection of ~ into S i (so that ~o i E S i) 
and q~-~ is the projection of q~ into A(S -i) (so that q~-iE RK-~). In 
particular, ~ - i  will be denoted by the K-i-dimensional vector: 

(3.2) (q~-i[s;i], ~- i [s~i] , . . . ,  q~-i[s~:'~i]) , 

where q~-~[s~ -~] has the interpretation of the probability weight given to 
s2 i in p-i .  When no confusion is likely, we shall abbreviate (3.2) as: 

(3.3) (~91 i, @ ; i . . . ,  ~�Kt'_i) , 

Finally, with each possible worlds space (I)i, we associate a metric m on 
qb ~. This metric has the interpretation of the theory with which player i 
forms counterfactual beliefs. Call the pair (r m)  player i's theory 
space. 

3.4. The Belief Function fli 

Consider the posterior probability attached to s~ i by player i at o~, 
obtained by conditioning on his partition ~ i. We denote this probabili- 
ty by q~-i(i, oJ). More precisely, 

(3.4) ~;i(i, w ) : =  pi({w ] s-i(w) = s; i} ] Pi(w)). 

Denote by 12+ the set ( o J ] p i ( w ) > 0 } ,  and define the function 
t i : ~/+ ~ A(S-i)  as follows: 

(3.5) ti(w) := ((p li(i, ~o), ~Ozi(i, w ) , . . . ,  q~Kii(i, 09)). 

From this, we define player i's belief function [3i:fli+ ~ c~ i as; 

(3.6) /3 i := (s i, t i ) .  

We can give the following interpretation to this function. Player i's 
partition ~ i  serves as his information partition. At  the state w, i 
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computes posterior probabilities by conditioning on Pi(~o). Thus, at the 
state o~, i attaches probability 1 to one of his own actions and attaches 
various probabilities to his opponents '  strategy combinations s -i. Each 
point in the possible worlds space ~i  constitutes a possible state of 
belief for player i obtained in this manner. The belief function/3 i is 
constructed so that, at w, player i has the set of probability beliefs 
given by the possible world/3i(w).  More figuratively, we say that, at 
the state w, player i believes that he is "at"  the possible world/3i(oj). 

3.5. The Payoff Function H i 

Each possible world q~ E qb i determines a probability distribution over 
S. By taking the weighed sum of hi(s) over s E S with the weights given 
by q~, we arrive at the expected payoff of player i at the possible world 
q~. We shall denote player i's expected payoff at the possible world q~ as 
Hi(~). To define this formally, let Iij be the indicator function 
Iii: S i--'-> {0, 1} such that, 

(3.7) Iij(si)=l if  si=sij 
= 0 otherwise.  

The function H i" qb~---> R is defined as follows. 
K i K - i  

(3.8) Hi(~p) Z Z i i - i  i i - i  . = Ij(~ )~o k h ( s j , s k )  
j=l k=l 

To verify that H i is in accordance with the intuition outlined above, 
note that from (3.4) and the definition of /3 i, when /3i(oj) = q~, 
iij(~0i)q~ ~i is the probability of the event {~o I s(oJ) = (sij, s~-i)} accord- 
ing to p', conditional on Pi(w). 

3.6. The Proposition Set ~i  
�9 �9 i We shall associate with each player i a set ofpropostttons q'. This set is 

defined by the following three clauses�9 

(i) The following are elements of ~;. 
i .  t~ o-~.= "player i plays sj , for all j E { 1 , . . . ,  K/}, 
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- i  o-, := "the set of players except i play the (possibly correlated) 
s t ra tegy/x" ,  for all /x @ A(S-i) ,  

i , ,  ~'r := "player i's payoff does not exceed r , for all r E N. 

(ii) Suppose tO, X E ~i Then to ~ X is an element of ~i. 

(iii) ~ is the smallest set satisfying (i) and (ii). 

3.7. Truth Conditions and Events 

Given player i's theory space (qb ~, m) ,  consider a function e: qb~• 
�9 ~--+{0, 1}. For any such function, denote by Itole the set {q~E 
�9 i le(q~, to)= 1}. We say that the function e is the truth funct ion 
relative to the metric m if, for all q~ ~ d~ i and to E xI *i, 

(i) e(~, trij)= 1 <::> 

(ii) e(q~, trTj ) = 1 <=> 

(iii) e(q~, rrir) = 1 <=> 

(iv) e(~o, to E]--->X) = 1 <=> 

i i q~ = s  j ,  VjE{1,...,K'} 
- i  

~o = ~ ,  V~ ~,a(S-~) 
Hi(qQ ~< r, Vr @ 

there is a closed sphere C around ~ in 
the metric m such that C D I 0 I, is 
non-empty and C D I 0 I, C_ I Xle' 

When e is a truth function, we say that to is true at ~ if e(q, to) = 1. to 
is false at ~ otherwise. Worthy of note is clause (iv) formalizing the 
truth condition for counterfactual propositions. It states that to ~ X is 
true at the possible world q~ if, and only if, in the closest possible 
world(s) to q~ in which to is true, X is also true. 

When e is a truth function, we shall drop the subscript e from [to le" 
In this case, we call I tol the event corresponding to to. 

3.8. Rationality 

Suppose/3/(to) = ~, and player i holds the metric m. We say that i is 
m-rational at to if, 

(3.9) For all j E {1 . . . .  , Ki}, there is r ~< Hi(g0 such that 
tr/j El--+ Ir/r is true at q~. 
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In other words, i is m-rational at w if i believes that he is at a 

possible world at which, according t o  his metric m, he would not gain 
if he were to deviate. In general, we say that i is m-rational if i is 
m-rational at all states on .�9 which /3 i is defined. The notion of m- 

rationality is a stipulation on a player's probability distribution. Name- 
ly, a player's probability distribution should be Such that, given his 
metric m, he will not find himself in a situation in which he believes 

that he would do better  if he were to deviate. Thus, m-rationality 
describes a type of cons is tency-  the consistency of a player's proba- 
bility distribution with his metric. 

3.9. The Metric A 

We explore the equilibrium structure arising from the "library stack 
metric" in the n-player case. This metric will be the sum of two metrics 

on the two component  sets 0~ @/. Denote  by A i the discrete metric on 
S i and by A -i the Euclidean.. r~orm on A(s- i ) .  That  is, 

(3.10) Ai(s i, s ; )={01  
if y=q 

' otherwise 

(3.11) A-'(q~ ', ~-~) = )1J2 K t [@; i  ~ - i 2  
~- -- k [ 

Thus, suppose q~ = (q i, q - i }  and ~b = (h i  ~ ,  ~b-~). We define A as the 
sum of A i and A -i. 

(3.12) A(q~, 4) :=  l~i(q 9i, ~ 9i) q- ~ - i (  -i, ~ - i )  . 

3.10. Aumann Rationality 

We now come to our second theorem. We shall demonstrate that a 
player who is rational with respect to the metric A will act in accord- 
ance with the criterion of rationality as set out by Aumann (1987), and 

i S i conversely. Denote  by Clq the constant function Cq: 12---~ such that 
i for all w. We say that player i is Aumann-rational at the Ciq(O.)) = S q , 

state o) if: 
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(3.13) E(hi(s) l pi(o)))>i g(hi(ciq, s-i) l pi(o))), 

for all q E { 1 , . . . ,  K i} . 

where E denotes the expectation with respect to the distribution p~. 

3.11. The Theorem 

THEOREM 2. Player i is A-rational at o~ if and only if i is Aumann- 
rational at w. 

The following corollaries are straightforward consequences of this 
result. (See also Aumann's 1987 main theorem.) 

COROLLARY 3.1. Suppose pi = p, Vi. Then all players are h-rational 
if and only if p is a correlated equilibrium. 

COROLLARY 3.2. Suppose pi = P, Vi, and p is independent. Then all 
players are A-rational if and only if  the mixed strategies given by p is a 
Nash equilibrium. 

We are now in a position to tie together the results in Sections 2 and 3. 
Theorem 1 has identified the class of ratifiable distributions, while 
Theorem 2 and its corollaries have identified the class of counterfactu- 
ally rational distributions. In both cases, they coincide with the class of 
correlated equilibria. Thus, we conclude that, under our formaliza- 
tions, ratifiability and counterfactual rationality coincide. We have thus 
accomplished the main task of this paper. 

4. A N  O V E R V I E W  

We conclude with some general comments surveying the terrain we 
have covered. It was claimed in Section 2 that, by working with 
tremble-free distributions which could be obtained as the limit of a 
sequence of distributions with trembles, we could, as it were, have our 
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cake and eat it too. That is, we could help ourselves to the c o n t e n t  of 
e-ratifiability without actually having trembles at all. 

The objection to this claim is clear enough-  that, although we are 
working with tremble-free distributions, as long as we make reference 
to trembles of any form in the definition of ratifiability, we cannot 
remain untinged of associations therewith. This is a criticism which 
must be taken seriously, and it is sufficiently forceful to persuade us to 
search for alternative formulations of rational choice which goes 
beyond ratifiability. Having worked through the constructions in Sec- 
tions 2 and 3, the reader will have gained some idea of the role played 
by ratifiability. The device of trembles is brought in, not because of the 
intrinsic interest of players "trembling", but because we want to 
evaluate propositions of the form: 

(4.1) "I play x, but if I were to play y, the consequence would be 
2"". 

In other words, ratifiability is a device for formalizing counterfactual 
beliefs about those acts which are given zero probability in equilib- 
rium. The postulates (A1) to (A4) are instrumental in providing a 
particular theory of counterfactuals within which to evaluate these 
statements. 

It is this which motivates the discussion of counterfactuals in Section 
3. By tackling counterfactuals head on, we can by-pass the enterprise 
of defining rationality in terms of concepts such as trembles. In short, 
rather than packing away all the assumptions into the postulates (A1) 
to (A3), we are able to lay bare the workings of the relevant 
counterfactuals. 
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APPENDIX 1 

Proof of Theorem 1. 
We begin with some preliminary remarks. Let some e > 0 be given. 

Since H/partitions O, p(~-~ [ 6~) = 1 -  ~'m~:k P(~'~ [ 6~). Thus, whenp 
satisfies (A1) for player i, 

(5.1) p ( ~  ~':)={~ if j ~ k  
1 - ( K i - 1 ) e  if j = k  

#~) = p(#~ I we Then, since p(3': n ~ i i i 6J)P(6i)' have: 

(5.2) p(61.n #~)=Oc~p(6 ' j )=O 

Suppose p satisfies (A1) and (A2) for i and is modest for i. Then, 
consider the probability p(Tr / i l61  D 7r~ -~) when p(6~j)> 0. We have 
two cases. 

Case (i) p(6ijn S;i)>0 

i i p(Tr/i l 6 j n ~-~) = 

' i i p(~/' n 8: n #k) 
p(6~j n ~-~) 

i i p(Sf  -i D 6 j n 7rk) 
p(6 i n ~r ~) , by modesty 

p(Tr~ I i i 

p(S; i  n 6ij) 
p(6~) , by (A2). 

Case (ii) p(6i /n a? i) = 0 

- i  i i p(Th n S j n  ~-~) 
' i i 

p(# ; '  I s i n  #~) = p(s~jn #~) 
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i i 

, by modesty 

= 0  

In other words, when p satisfies (A1), (A2) and modesty for i, 
whenever p(6ij) > 0, 

" i i (5.3) Vl, j , k  

We can then prove Theorem 1. First, we show that when p is 
modestly ratifiable, p is a correlated equilibrium. We fix a player i and 
let (p , )  and (e,) be sequences such that, p, is 6-ratifiable for i for all 
t, pt is modest for i for all t, and p~--->p as 6-->0. Then, by (A3) and 
(5.2), whenever p,(6ij) > O, 

- i  i i i i " 
(5.4) E Pt(~l [ 6j f-I 7rj)h (s i, sT') 

l 

 k)h (sk, s, ), Vj, k .  
1 

where l ranges over { 1 , . . . ,  K-i}. Denote the left hand side of (5.4) 
by L t and the right hand side by R,. Then, 

g - i  
: i i i i ' 

lim L t ~ lim pt(Tr[i l 6j M ~rj)h (sj, s[') 
t---> ~ I = 1  t "--> :~  

lim p , (6[ i [  i i i - - i  = 6j)h (sj, s, ), by (5.3) 
l ~ l  t - --)  ~ 

g - i  

E t ~ i ) h i ( s  i - i  P(r i I - - j . " "  \ j '  S t  ) '  since p,--->p. 

Similarly, 
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g - i  

l imR,  Z p(Sl-i[ i i i - i  = 8j)h ).  
t - - ~  1 = 1  

Since L t >1 R t for all t, limt__,~ L t >i limt__,= R t . This argument can be 
repeated for both players. Thus, whenever 6j is non-null, 

K - i  

(5.5) ~ ch~(llj)[h~(s~j s ; - ' ) -  ~ e , " h ( s  k , s S )  l>>-O, Vi, j , k .  
l = 1  

which is the condition for p being a correlated equilibrium. 
We now prove the converse. Namely, when (5.5) holds for non-null 

i 8j ,  p is modestly ratifiable. Take some player i. Let (e,)  be some 
sequence which corwerges to zero. We construct a sequence (p t )  as 
follows. 

(i) p , (8  ) = p(8 ), .VS, t, 

(ii) p, is modest for  i, Vt, 

(iii) pt satisfies (A1) and (A2) for i, where e = e,, Vt. 

Then Pt--*P a s  et---+O. Moreover,  Pt is modest for i, for all t. Thus, 
to prove that p is modestly ratifiable for / ,  it remains to check that Pt is 
et-ratifiable for i, for all t. Of all three conditions for e,-ratifiability, 
(A1) and (A2) hold by construction. To see that (A3) holds as well, 
note that from (i) and (5.5), whenever 6 I. is non-null, 

g - i  

i i i - i  i i (5.6) ~ Pt(8; i I 8j)[h (sj sTi)]/> ,sl ) -h(s~ ,  O, Vj, k , t .  
l = 1 '  

Then, from (5.3) and (5.2), 

i i i i " (5.7) ~ p,(~rZ i ] 8j n Trj)h (sj, s~-') 
I 

i i i i - i  >>' p,(Tr;'lSjn rk)h(sx, sz ), W,k ,  t ,  
l 

whenever ~uch expressions are defined. This is the condition (A3). 
Thus, p is modestly ratifiable for i. We can construct such a sequence 
for both players, so that p is modestly ratifiable for both players. This 
proves our theorem. 
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A P P E N D I X  2 

Proof  of  Theorem 2. 
i " i D e n o t e  by q~\Sq the vector (s'q, q- i ) .  In other words,  q ~ q  is the 

possible  world obta ined from q~ by replacing q i with siq. We also use 
the  fo l lowing abbreviations.  

[s;] = { ~  I si(o~) : s ; } ,  

[s~q = {o~ I s-'(o~) =sk-~ ) ,  

Is] = (,,, I s ( . , )  : s } .  

A final piece of  notation: we define Sit = (s  E S I Si = SI}" That is, Sit is 
the set of  all strategy combinat ions  in which player i plays s I . 

P R O P O S I T I O N  6.1. Suppose [3i(w) = ~p. Then, 

(i)  H i ( v )  = E(hi(s)  t Pi(o>)) 

( i i )  Hi(~S iq )  = E(hi(ciq,  s - i )  I P~(~o)). 

i Proof. (i)  si(oj) = s t for some l E { 1 , . . .  , Ki}. Then,  

K i K-i 
H i ( v )  E E i i -i  i i -i  = Ij(~o )~k h (s i,s~ ). 

y=l  k = l  

Z - i  i i - i  i i = s~ ),  since . q~k h (s l ,  ~p = s t 
k 

E i - i  i i i - i  = s k ),  from (3 .4)  p ([s~ 11 P (o,))h (s,,  
k 

: E Pi([Sk i] ('] [Sl] I Pi(w))hi(sl,i Sk-i), 
k 

since Pi(w) = [s l ] .  

= E p i ( (  o~ I s ( w )  = (s~,  sk-i ) } l  e i ( ,o) )h  / (s,,i s,-i ) , 
k 
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(ii) 

= ~ pi([sJ]pi(oa))hi(s) ,  
sESil 

= ~. p~([s]]P~(o~)W(s), since [s] n pi(oo) is null 
s~S 

for all s ~ S u . 

= E(hi(s) ] Pi(w)) .  

K i K-i  
Hi(q?\Siq) -'- E E Ij(Sq)i i ~9k-i (s:,i Sk-i) 

j = l  k = l  

= E q~;ihi(siq,S;i),  
k 

= E Pi([s~i l lpi(w))hi(s iq,  ski) ,  from (3.4) 
k 

2 p~([s-i]l  / i i �9 , = P (o ) ) )h  (Sq ,  s - t )  
s i~s- i  

i i = E(h  (Cq, S-') I Pi(w)) �9 [] 

P R O P O S I T I O N  6.2. Suppose j~ i ( ( .O):  9" Then i is A-rational at oa if 
and only i f  

(6.1) H~(r >l HZ(~\Siq), Vq . 

i i Proof. (if) Suppose Hi(~o)~ H (q)\Sq). Define C to be the closed 
sphere around ~ in the metric A with the radius A(~, ~\S~q). We claim 
that c a  I iql is the singleton {q~\Siq}. For, suppose not. Then there is 
?p E C n ]O'iql such that ff # q~Siq. However,  then, 

a ( , ,  = Ai( ,  i, + A-i( 

i i i - i  " = a (q~, Sq) + A-'(q~ , ~ - ' ) ,  since ~ e IO-iq] 

> Ai(qfl, Oiq), since f f - i #  q~-i 

But this contradicts the supposition that ~b E C n ]O-/q], since the radius 
of Cis  given by A(~0, i i i i ~O\S q) = A (q~ , S q), thereby establishing the claim. 
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Denote  by r the number i H (~oksq). Then I 'ql n c c_ I 'rl, so that 
O-~q ~ rr~ is true at ~o. However ,  r~< He(q~) by supposition. In other 

i ~ . ~  7Tir is true at ~. words, for all q, there is r ~< H~(q~) such that O ' q  

This is the definition of A-rationality at ~o. 
(only if) By A-rationality at oJ, for all q, there is r ~ Hi(q~) such that 

i i 
O-q ~ 7rr is true at ~. By the truth condition for D-->, there is a closed 
sphere C around ~ such that C n I 'ql is non-empty and C n IO-iq[ C 
I~-~l. Let ~ ~ C N I iql. Then, 

t~(~, ~D) i i -i  = A (~D, ~i )  -t- A-i(~D , ~ - i )  

l~i(~)i ~ i )  

= 

A(~,  ~Siq) = t~i(~ i, OViq) ~- t~- i (~- i ,  ~ - i )  

i i " = a ( ~ ,  Stq). 

Since the radius of C is no less than h(~, if) and A(~0, if)/> h(q, ~okSiq), 
we have q\Siq E C. Also, ~Siq E [~riq[. By supposition, C n Wql c_ I# 1, 

. ~ i so that r E I irl Hence,  Hi(r <~ r. But we know that r--~ H (r 
Thus, H'(q~) >i i i H ( ~ \ S q ) .  Moreover,  this is the case for all q. [] 

Proof of Theorem 2. 
i i i i is A-rational at 09 <=> H (~) i> H (~kSq), Vq (by Proposition 6.2) <::> i 

is Aumann-rational at w (by Proposition 6.1). [] 
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