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Let G = 〈{Si}i∈N , {ui}i∈N〉 be a finite strategic game (each Si is finite
and the set of players N is finite).

A strategy profile is an element σ ∈ S = S1 × · · · × Sn

σ is a Nash equilibrium provided for all i , for all si ∈ Si ,

ui (σ) ≥ ui (si , σ−i )
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Let G = 〈{Si}i∈N , {ui}i∈N〉 be a finite strategic game.

Σi = {p | p : Si → [0, 1] and
∑

si∈Si p(si ) = 1}

The mixed extension of G is the game 〈{Σi}i∈N , {Ui}i∈N〉 where for
σ ∈ Σ = Σ1 × · · · × Σn:

Ui (σ) =
∑

(s1,...,sn)∈S

σ1(s1)σ2(s2) · · ·σn(sn)ui (s1, . . . , sn)
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Theorem. Suppose that σ is a Nash equilibrium in mixed strategies for a
game G = 〈{Si}i∈N , {ui}i∈N〉. Suppose that si , s

∗
i ∈ Si are two pure

strategies such that σi (si ) > 0 and σi (s
∗
i ) > 0, then

Ui (si , σ−i ) = Ui (s
∗
i , σ−i )
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Theorem (Nash). Every finite game G has a Nash equilibrium in mixed
strategies (i.e., there is a Nash equilibrium in the mixed extension G ).
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Not all equilibrium are created equal...
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Perfect equilibrium

Bob

A
nn

U L R

U 1,1 0,0 U

D 0,0 0,0 U

Completely mixed strategy: a mixed strategy in which every strategy
gets some positive probability

ε-perfect equilibrium: a completely mixed strategy profile in which any
pure strategy that is not a best reply receives probability less than ε

Prefect equilibrium: the mixed strategy profile that is the limit as ε
goes to 0 of ε-prefect equilibria.
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Perfect equilibrium

Bob

A
nn

U L R

U 1,1 0,0 U

D 0,0 0,0 U

Isn’t (U, L) more “reasonable” than (D,R)?which every strategy gets
some positive probability

ε-perfect equilibrium: a completely mixed strategy profile in which any
pure strategy that is not a best reply receives probability less than ε

Prefect equilibrium: the mixed strategy profile that is the limit as ε
goes to 0 of ε-prefect equilibria.
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Proper equilibrium

Bob

A
nn

U L C R

U -9,-9 -7,-7 -7,-7 U

M 0,0 0,0 -7,-7 U

D 1,1 0,0 -9,-9 U

ε-perfect equilibrium: a completely mixed strategy profile in which any
pure strategy that is not a best reply receives probability less than ε

Prefect equilibrium: the mixed strategy profile that is the limit as ε
goes to 0 of ε-prefect equilibria.

Eric Pacuit 8



Proper equilibrium

Bob

A
nn

U L C R

U -9,-9 -7,-7 -7,-7 U

M 0,0 0,0 -7,-7 U

D 1,1 0,0 -9,-9 U

ε-perfect equilibrium: a completely mixed strategy profile in which any
pure strategy that is not a best reply receives probability less than ε

Proper equilibrium: the mixed strategy profile that is the limit as ε goes
to 0 of ε-prefect equilibria.

Eric Pacuit 8



Proper equilibrium

Bob

A
nn

U L C R

U -9,-9 -7,-7 -7,-7 U

M 0,0 0,0 -7,-7 U

D 1,1 0,0 -9,-9 U

ε-proper equilibrium: a completely mixed strategy profile such that if
strategy s is a better response than s ′, then p(s)

p(s′) < ε

Proper equilibrium: the mixed strategy profile that is the limit as ε goes
to 0 of ε-proper equilibria.
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Normal form vs. Extensive form

A

B

-1,-1 1,1

0,0

a1 a2

b1 b2

Bob

A
nn

U b1 if a1 b2 if a1

a1 -1,-1 1,1 U

a2 0,0 0,0 U

(Cf. the various notions of sequential equilibrium)
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T. Seidenfeld. When normal and extensive form decisions differ. in Logic, Methodology
and Philosophy of Science IX, Elsevier, 1994.
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Trembling Hands

“There cannot be any mistakes if the players are absolutely rational.
Nevertheless, a satisfactory interpretation of equilibrium points in
extensive games seems to require that the possibility of mistakes is not
completely excluded. This can be achieved by a point of view which
looks at complete rationality as the limiting case of incomplete
rationality.” (pg. 35)

R. Selten. Reexamination of the Perfectness Concept of Equilibrium in Extensive Games.
International Journal of Game Theory, 4, pgs. 25 - 55, 1975.
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Why play Nash equilibrium?

Self-Enforcing Agreements: Nash equilibria are recommended by being
the only strategy combinations on which the players could make
self-enforcing agreements, i.e., agreements that each has reason to
respect, even without external enforcement mechanisms.

M. Risse. What is rational about Nash equilibria?. Synthese, 124:3, pgs. 361 - 384,
2000.
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Some equilibria are not self-enforcing

Bob

A
nn

U L R

U 9,9 0,8 U

D 8,0 7,7 U

An agreement to play (U,U) is not self-enforcing: Ann has a good
reason to believe that Bob will deviate (similarly for Bob)
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Some non-equilibria are self-enforcing

Bob

A
nn

U L R

U 0,0 4,2 U

D 2,4 3,3 U

An agreement to play (U,U) is not self-enforcing: Ann has a good
reason to believe that Bob will deviate (similarly for Bob)
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Some non-equilibria are self-enforcing

Bob

A
nn

U L R

U 0,0 4,2 U

D 2,4 3,3 U

An agreement to play (D,D) is self-enforcing: Both risk ending up with
0 if they deviate from the agreement.
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Towards an Epistemic Characterization of Nash Equilibria

Correlation: Players can improve their expected value by correlating
their choices on an “outside signal”

With more than 2 players...

A player may believe that (some of) the other players strategy
choices are independent or correlated.

Two players can agree or disagree on the probabilities that the
assign to a third player’s choice of strategy.
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Correlated Strategies

L R

U 2, 1 0, 0

D 0, 0 1, 2

I Three Nash equilibria:

• (U, L): the payoff is (2, 1)
• (D,R): the payoff is (1, 2)
• ([ 2

3 (U), 1
3D], [ 1

3 (L), 2
3 (R)]): the payoff is ( 2

3 ,
2
3 )

Each player conducts a private, independent lottery to choose their
strategy.

Conduct a public lottery: flip a fair coin and follow the strategy
(H ⇒ (U, L), T ⇒ (D,R)). The payoff is (1.5, 1.5).
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Correlated Strategies

L R

U 2, 1 0, 0

D 0, 0 1, 2

L R

U 0.5 0

D 0 0.5

I Three Nash equilibria:

• (U, L): the payoff is (2, 1)
• (D,R): the payoff is (1, 2)
• ([ 2

3 (U), 1
3D], [ 1

3 (L), 2
3 (R)]): the payoff is ( 2

3 ,
2
3 )

I Mixed Strategies: Each player conducts a private, independent
lottery to choose their strategy.

I Conduct a public lottery: flip a fair coin and follow the strategy
(H ⇒ (U, L), T ⇒ (D,R)). The payoff is (1.5, 1.5).
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Two extremes:

1. Completely private, independent lotteries

2. A single, completely public lottery

What about: a public lottery, but reveal only partial information about
the outcome to each of the players?
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A L R

U 0, 1, 3 0, 0, 0

D 1, 1, 1 1, 0, 0

B L R

U 2, 2, 2 0, 0, 0

D 2, 2, 0 2, 2, 2

C L R

U 0, 1, 0 0, 0, 0

D 1, 1, 1 1, 0, 3

I Three player game: Ann chooses the row, Bob chooses the column,
Charles chooses the matrix

The only equilibrium payoff is (1, 1, 1)
There is a correlated mechanism that produces (2, 2, 2)

Ann and Bob toss a fair coin, but do not reveal the result to Charles
Ann and Bob correlate their choices on the coin toss
(H ⇒ (U, L),T ⇒ (D,R))
Charles choose B
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L R

U 6, 6 2, 7

D 7, 2 0, 0

L R
U 0.5 0
D 0 0.5

I Three Nash equilibria:

• (U,R): the payoff is (2, 7)
• (D, L): the payoff is (7, 2)
• ([ 2

3 (U), 1
3D], [ 2

3 (L), 1
3 (R)]): the payoff is (4 2

3 , 4
2
3 )

After conducting the lottery, an outside observer provides Ann with
a recommendation to play the first component of the profile that
was chosen, and Bob the second component.

The expected payoff is 1
3 (6, 6) + 1

3 (2, 7) + 1
3 (7, 2) = (5, 5) (which is

outside the convex hull of the Nash equilibria)
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Towards an Epistemic Characterization of Nash Equilibria

Correlation: Players can improve their expected value by correlating
their choices on an “outside signal”

With more than 2 players...

I A player may believe that (some of) the other players strategy
choices are independent or correlated.

I Two players can agree or disagree on the probabilities that the
assign to a third player’s choice of strategy.
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Comparing Dominance Reasoning and MEU

G = 〈N, {Si}i∈N , {ui}i∈N〉
X ⊆ S−i (a set of strategy profiles for all players except i)

s, s ′ ∈ Si , s strictly dominates s ′ with respect to X provided

∀s−i ∈ X , ui (s, s−i ) > ui (s
′, s−i )

s, s ′ ∈ Si , s weakly dominates s ′ with respect to X provided

∀s−i ∈ X , ui (s, s−i ) ≥ ui (s
′, s−i ) and ∃s−i ∈ X , ui (s, s−i ) > ui (s

′, s−i )

p ∈ ∆(X ), s is a best response to p with respect to X provided

∀s ′ ∈ Si , EU(s, p) ≥ EU(s ′, p)
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Strict Dominance and MEU

Fact. Suppose that G = 〈N, {Si}i∈N , {ui}i∈N〉 is a strategic game and
X ⊆ S−i . A strategy si ∈ Si is strictly dominated (possibly by a mixed
strategy) with respect to X iff there is no probability measure p ∈ ∆(X )
such that si is a best response to p.
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Suppose that G = 〈N, {Si}i∈N , {ui}i∈N〉 is a finite strategic game.

Suppose that si ∈ Si is strictly dominated with respect to X :

∃s ′i ∈ Si ,∀s−i ∈ X , ui (s
′
i , s−i ) > ui (si , s−i )

Let p ∈ ∆(X ) be any probability measure. Then,

∀s−i ∈ X , p(s−i ) · ui (s ′i , s−i ) ≥ p(s−i ) · ui (si , s−i )

∃s−i ∈ X , p(s−i ) · ui (s ′i , s−i ) > p(s−i ) · ui (si , s−i )

Hence, ∑
s−i∈S−i

p(s−i ) · ui (s ′i , s−i ) >
∑

s−i∈S−i

p(s−i ) · ui (si , s−i )

So, EU(s ′i , p) > EU(si , p): si is not a best response to p.
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For the converse direction, we sketch the proof for two player games and
where X = S−i .

1

Let G = 〈S1,S2, u1, u2〉 be a two-player game.
(Let Ui : ∆(S1)×∆(S2)→ R be the expected utility for i)

Suppose that α ∈ ∆(S1) is not a best response to any p ∈ ∆(S2).

∀p ∈ ∆(S2) ∃q ∈ ∆(S1), U1(q, p) > U1(α, p)

We can define a function b : ∆(S2)→ ∆(S1) where, for each p ∈ ∆(S2),
U1(b(p), p) > U1(α, p).

1The proof of the more general statement uses the supporting hyperplane theorem
from convex analysis.
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Consider the game G ′ = 〈S1,S2, u1, u2〉 where

u1(s1, s2) = u1(s1, s2)− U1(α, s2) and u2(s1, s2) = −u1(s1, s2)

By the minimax theorem, there is a Nash equilibrium (p∗1 , p
∗
2) such that

for all m ∈ ∆(S2),

U(p∗1 ,m) ≥ U1(p∗1 , p
∗
2) ≥ U1(b(p∗2), p∗2)

We now prove that U1(b(p∗2), p∗2) > 0:
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U1(b(p∗2), p∗2) =
∑

x∈S1

∑
y∈S2

b(p∗2)(x)p∗2(y)u1(x , y)

=
∑

x∈S1

∑
y∈S2

b(p∗2)(x)p∗2(y)[u1(x , y)− U1(α, y)]

=
∑

x∈S1

∑
y∈S2

b(p∗2)(x)p∗2(y)u1(x , y)

−
∑

x∈S1

∑
y∈S2

b(p∗2)(x)p∗2(y)U1(α, y)

= U1(b(p∗2), p∗2)
−

∑
x∈S1

∑
y∈S2

b(p∗2)(x)p∗2(y)U1(α, y)

> U1(α, p∗2)−
∑

x∈S1

∑
y∈S2

b(p∗2)(x)p∗2(y)U1(α, y)

> U1(α, p∗2)

= U1(α, p∗2)− U1(α, p∗2) ·
∑

x∈S1
b(p∗2)(x)U1(α, p∗2)

= U1(α, p∗2)− U1(α, p∗2) = 0
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Hence, for all m ∈ ∆(S2) we have

U(p∗1 ,m) ≥ U1(p∗1 , p
∗
2) ≥ U1(b(p∗2), p∗2) > 0

which implies for all m ∈ ∆(S2), U1(p∗1 ,m) > U1(α,m), and so α is
strictly dominated by p∗1 .
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Important Issue: Correlated Beliefs

x l r

u 1,1,3 1,0,3

d 0,1,0 0,0,0

y l r

u 1,1,2 1,0,0

d 0,1,0 1,1,2

z l r

u 1,1,0 1,0,0

d 0,1,3 0,0,3

I Note that y is not strictly dominated for Charles.

I It is easy to find a probability measure p ∈ ∆(SA × SB) such that y
is a best response to p. Suppose that p(u, l) = p(d , r) = 1

2 . Then,
EU(x , p) = EU(z , p) = 1.5 while EU(y , p) = 2.

I However, there is no probability measure p ∈ ∆(SA × SB) such that
y is a best response to p and p(u, l) = p(u) · p(l).
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x l r

u 1,1,3 1,0,3

d 0,1,0 0,0,0

y l r

u 1,1,2 1,0,0

d 0,1,0 1,1,2

z l r

u 1,1,0 1,0,0

d 0,1,3 0,0,3

I To see this, suppose that a is the probability assigned to u and b is
the probability assigned to l . Then, we have:

• The expected utility of y is 2ab + 2(1− a)(1− b);
• The expected utility of x is 3ab + 3a(1− b) = 3a(b + (1− b)) = 3a;

and
• The expected utility of z is

3(1− a)b + 3(1− a)(1− b) = 3(1− a)(b + (1− b)) = 3(1− a).
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Weak Dominance and MEU

Fact. Suppose that G = 〈N, {Si}i∈N , {ui}i∈N〉 is a strategic game and
X ⊆ S−i . A strategy si ∈ Si is weakly dominated (possibly by a mixed
strategy) with respect to X iff there is no full support probability
measure p ∈ ∆>0(X ) such that si is a best response to p.
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Model of Differential Information

I Let Ω be a set of states:
“The term “state of the world” implies a definite specification of all
parameters that may be the object of uncertainty on the part of any
player of G . In particular, each w includes a specification of which
action is chosen by each player of G at that state w . Conditional on
a given world, everybody knows everything; but in general, nobody
knows which is really the true w .” (pg. 6)

I Let {Πi}i∈N be a set of partitions on Ω, Πi (w) is the element of Πi

containing w

I Let {pi}i∈N is a set of probability measure on Ω
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Common Prior Assumption

Common Prior Assumption (CPA): There is a probability measure p on Ω
such that

p1 = p2 = · · · = pn = p
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Prior and posterior beliefs

I Different stages of information disclosure:

1. Ex ante: No information. Possibly background beliefs about who you
are playing against (background beliefs about the “context of
interaction”).

Prior beliefs.

2. Ex interim: The players receive a (private) information (a “signal”.
They know more.

Posterior beliefs.
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Common priors

I 6⇒ same posteriors!

For the simple reason that agents can receive
different private information.

I We play card together.

Before the cards are dealt, our common prior
belief that the other end up with a Joker is 0.037 = 2/54.

I We get 5 card each (and don’t show them to each other). I end up
with the 2 Jokers.

• My posterior belief that you have a Joker is 0.
• Your posterior belief that I have a Joker is 0.04 = 2/49.
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Common Prior Assumption

I Differences in posterior beliefs should be seen as coming from
different information, not from different priors.

I Alternative formulation: “...people with different information may
legitimately entertain different probabilities, but there is no rational
basis for people who have always been fed precisely the same
information to do so.” (...Given that everyone are Bayesians)

“Harsanyi doctrine” [Aumann, 1976].

I CPA not an innocuous assumption! (cf. Aumann’s agreeing to
disagree theorem)

R. Aumann. Agreeing to Disagree. Annals of Statistics, Vol.4, No.6, 1976.

J.C. Harsanyi. Games with incomplete informations played by bayesian players. Man-
agement Science 14:159182, 320334, 486502, 1967-68.
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Why CPA?

I A controversial question!

• See Morris (1995) for a thorough discussion. One methodological
observation:

I Better to explain differences in posterior on the basis of identifiable
differences in information or plausible errors in information processing.

I Resorting on differences in priors often appears ad hoc (the resulting
theory is “too permissive”).

S. Morris. The Common Prior Assumption in Economic Theory. Economics and Phi-
losophy, 11(2): pgs. 227- 253, 1995.
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Let G = 〈{Si}i∈N , {ui}i∈N〉 be a strategic game.

I Ω is a set of states

I There is a common prior: a probability measure p on Ω

I {Πi}i∈N is the set of information partitions

I s : Ω→ S1 × · · · × Sn with si (w) the strategy of player i at w .

I For each i ∈ N, the players “know” which action she chooses: si is
measurable with respect to Πi :

I The expected utility of the strategy choice at w is:

EUi (s,w) =
∑
v∈Ω

p(v | Πi (w))ui (s(v))

Bayes Rationality For all w ∈ Ω, EUi (s,w) ≥ EU((si , s−i ),w) for all
si ∈ Si
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Correlated Equilibrium

Let G = 〈{Si}i∈N , {ui}i∈N〉 be a game.

A correlated strategy n-tuple in G is a function from a finite probability
space Γ into S = S1 × · · · × Sn. That is, f is a random variable whose
values are n-tupels of actions.

Chance (according to the probability space Γ) chooses an element γ ∈ Γ,
then each player is recommended to take action fi (γ).

Correlated Equilibrium: A correlated equilibrium in G is a correlated
strategy n-tuple f such that

Eui (f ) ≥ Eui (gi , f−i )

Eric Pacuit 38



Theorem. Assume that there is a common prior and that for all w , for
all i ∈ N, Πi (w) ⊆ {v | si (v) = si (w)}. If each player is Bayes rational
at each state of the world, then the distribution of the action n-tuple s is
a correlated equilibrium.

Eric Pacuit 39



Nash Equilibrium

A B

a 1, 1 0, 0

b 0, 0 1, 1

I The profiles aA and bB are two pure-strategy Nash equilibria of
that game.

Definition
A strategy profile σ is a Nash equilibrium iff for all i and all s ′i 6= σi :

ui (σ) ≥ ui (si , σ−i )
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More Specific Expectations

A B

a 1, 1 0, 0

b 0, 0 1, 1

I If Ann believes that Bob plays A, the only rational choice for her is
a.

I The same hold for Bob.

I If, furthermore, these beliefs are true, then aA is played.
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Knowledge of Strategies and Nash Equilibrium

A B

a 1, 1 0, 0

b 0, 0 1, 1

I If Ann and Bob are rational and have correct beliefs about each
others’ strategy choices, then aA is played.

I For any two-players strategic game and model for that game, if at
state w both players are rational and know the other’s strategy
choice, then σ(w) is a Nash equilibrium.

R. Aumann and A. Brandenburger, “Epistemic Conditions for Nash Equilibrium”.
Econometrica. 1995.
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Econometrica. 1995.
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Hard Knowledge of Strategies and Nash Equilibrium

Theorem
(Aumann and Brandenburger, 1995) For any two-players strategic game
and model for that game, if at state w both players are rational and
know other’s strategy choice, then σ(w) is a Nash equilibrium.

I Remarks:

• Close to the intuitive explanation: Best response given the choices of
others, or no regret.

• No higher-order information needed... for 2 players (more on this in a
moment).

• Hard knowledge, or even correct beliefs, about actions taken? Does
Nash equilibrium undermine strategic uncertainty?
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Nash equilibrium, the general case

(Aumann and Brandenburger, 1995) In an n-player game, suppose that
the players have a common prior, that their payoff functions and their
rationality are mutually known, and that their conjectures are commonly
known. Then for each player j , all the other players i agree on the same
conjecture σj about j , and the resulting profile (σ1, .., σn) of mixed
actions is a Nash equilibrium.

I Remarks:

• Higher-order information after all: common knowledge of conjectures.
• The result is “tight”. Fails if we drop any of the conditions.
• Epistemic Interpretation of mixed strategies.
• If the payoffs are common knowledge, then rationality is also common

knowledge (Ben Polak, Econometrica, 1999).
• But still, CKR does not imply Nash Equilibrium.
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The Importance of Correlations

I We will see that rationality and common belief of rationality implies
that players play correlated rationalizble strategies.

I Question: where do (beliefs in) correlations come from?
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The Importance of Correlations

I We will see that rationality and common belief of rationality implies
that players play correlated rationalizble strategies.

I Question: where do (beliefs in) correlations come from?
Answer: A player can think that other players’ strategy choices are
correlated, because he thinks what they believe about the game is
correlated.
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Two routes to explain correlations

Correlations

R.J. Aumann. Correlated equilibrium as an expression of bayesian rationality. Econo-
metrica, 55(1-18), 1987.

A. Brandenburger and A. Friedenberg. Intrinsic Correlations in Games. J.E.T., vol.
141, 2008.
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Two routes to explain correlations

Signals

Beliefs

Correlations
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