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Game Theory

“We wish to find the mathematically complete principles which define
‘rational behavior’ for the participants.” (pg. 31)

J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Prince-
ton University Press, 1944.

“Game theory is a bag of analytical tools designed to help us understand
the phenomena that we observe when decision-makers interact.” (pg. 1)

M. Osborne and A. Rubinstein. Introduction to Game Theory. MIT Press, 2004.
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The Guessing Game

Guess a number between 1 & 100.
The closest to 2/3 of the average wins.

What number should you guess? 100, 99, . . . , 67, . . . , 2, 1
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The Guessing Game

Guess a number between 1 & 100.
The closest to 2/3 of the average wins.

What number should you guess? ��HH100, ��ZZ99, . . . , ��ZZ67, . . . , �A2, 1
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Plan for Today

I Just enough decision theory

I Just enough game theory

I Setting the stage: Epistemic game theory
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Just enough decision theory

Rational decision making is associated with both the capacity to order
outcomes and to choose from the top of the order.

“The only normative content implied by the use of an expected utility
model is that preferences should be coherent.” (pg. 11, Skyrms)
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Maximizing

A. Sen. Maximization and the Act of Choice. Econometrica, Vol. 65, No. 4, 1997, 745
- 779.

“The formulation of maximizing behavior in economics has often
paralleled the modeling of maximization in physics an related disciplines.

But maximizing behavior differs from nonvolitional maximization because
of the fundamental relevance of the choice act, which has to be placed in
a central position in analyzing maximizing behavior. A person’s
preferences over comprehensive outcomes (including the choice process)
have to be distinguished from the conditional preferences over
culmination outcomes given the act of choice.” (pg. 745)
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You arrive at a garden party and can readily identify the most
comfortable chair. You would be delighted if an imperious host were to
assign you that chair. However, if the matter is left to your own choice,
you may refuse to rush to it.

You select a “less preferred” chair. Are you
still a maximizer? Quite possibly you are, since your preference ranking
for choice behavior may well be defined over “comprehensive outcomes”,
including choice processes (in particular, who does the choosing) as well
as the outcomes at culmination (the distribution of chairs).

To take another example, you may prefer mangoes to apples, but refuse
to pick the last mango from a fruit basket, and yet be very pleased if
someone else were to “force” that last mango on you. ” (Sen, pg. 747)
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Rational decision making is associated with both the capacity to order
outcomes and to choose from the top of the order.
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Preferences

Preferring or choosing x is different than “liking” x or “having a taste for
x”: one can prefer x to y but dislike both options

Preferences are always understood as comparative: “preference” is more
like “bigger” than “big”

Revealed Preferences: Ann is said to have a preference for x over y iff
Ann chooses x over y where choice is conceived of as overt behavior.

Deliberative Preferences: A person deliberates and (ideally) ranks all
the possible “outcomes”
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Preliminaries: Orderings

An ordering is a relation R on a set X : a subset of the set of pairs of
elements from X : R ⊆ X × X

Write aRb iff (a, b) ∈ R

Properties of orderings:

I Reflexivity: for all a ∈ X , aRa

I Transitivity: for all a, b, c ∈ X , aRb and bRc then aRc

I Symmetry: for all a, b ∈ X , aRb implies bRa

I Asymmtery: for all a, b ∈ X , aRb implies not-bRa

I Completeness: for all a, b ∈ X , aRb or bRa (or a = b)
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Preliminaries: Orderings

Let X be the set of outcomes (or options) and � an ordering
(�⊆ X × X ).

Given two outcomes x , y ∈ X , there are four possibilities:

1. x � y and y 6� x : The agent strictly prefers x to y (x � y)

2. y � x and x 6� y : The agent strictly prefers y to x (y � x)

3. x � y and y � x : The agent is indifferent between x and y (x ≈ y)

4. x 6� y and y 6� x : The agent cannot compare x and y (x ⊥ y)
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Preliminaries: Utility Function

A utility function on a set X is a function u : X → R

A utility function u : X → R represents an ordering � on X provided
for all x , y ∈ X , x � y iff u(x) ≥ u(y).
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Ordinal Utility Theory: Axioms

1. Completeness: The preference ordering is complete: the decision
maker call always rank options (for any two options x and y , either
the decision maker (1) strictly prefers x to y , (2) strictly prefers y
to x or (3) is indifferent between x and y).

2. Reflexivity: Weak preference is reflexive: the agent always thinks x
is at least as good as x .

3. Transitivity: Weak preference (and hence strict and indifference) is
transitive
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Why should we accept these axioms?

“Rather than trying to provide instrumental or pragmatic justifications
for the axioms of ordinal utility, it is better...to see them as constitutive
of our conception of a fully rational agent....those disposed to blatantly
ignore transitivity are unintelligible to us: we can’t understand their
pattern of actions as sensible”
asdfadsf (Gaus, On Philosophy, Politics and Economics, pg. 39)
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Ordinal Utility Theory

Fact. Suppose that X is finite and � is a complete and transitive
ordering over X , then there is a utility function u : X → R that
represents �.

Utility is defined in terms of preference (so it is an error to say that the
agent prefers x to y because she assigns a higher utility to x than to y).

Important point: consider x � y � z , all three utility functions
represent this ordering:

Preference u1 u2 u3

x 3 10 1000
y 2 5 99
z 1 0 1
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Cardinal Utility Theory

x � y � z is represented by both (3, 2, 1) and (1000, 999, 1), so cannot
say y is “closer” to x than to z .

Key idea: Ordinal preferences over lotteries allows us to infer a cardinal
scale (with some additional axioms).

John von Neumann and Oskar Morgenstern. The Theory of Games and Economic
Behavior. Princeton University Press, 1944.
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A Choice

T or G?

$7, 000

$20, 000 $0

T G

0.5 0.5
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Suppose that X is a set of outcomes.

A (simple) lottery over X is denoted [p1 : x1, p2 : x2, . . . , pn : xn] where
for i = 1, . . . , n, xi ∈ X and pi ∈ [0, 1], and

∑
i pi = 1.

Let L be the set of (simple) lotteries over X . We identify elements
x ∈ X with the lottery [1 : x ].

Eric Pacuit 18



Axiom 1

� is a preference ordering over L: i.e., � is a reflexive, transitive and
complete relation on L.

Eric Pacuit 19



Axiom 2

Continuity: For every triple x , y , z ∈ X , if x � y � z , then there exists a
p ∈ [0, 1] such that

y ≈ [p : x , (1− p) : z ]

Eric Pacuit 20



Axiom 3

Monotonicity: Suppose that p, q ∈ [0, 1] and suppose that x � y . Then,

[p : x , (1− p) : y ] � [q : x , (1− q) : y ]

if, and only if, p ≥ q.
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Compound Lotteries

Suppose that L1, . . . , Ln are lotteries. A compound lottery is the lottery
[p1 : L1, . . . , pn : Ln] where pi ∈ [0, 1] and

∑
i pi = 1.

Let L̂ be the set of compound lotteries.

Eric Pacuit 22



Axiom 4

Simplification of Compound Lotteries: The decision maker is
indifferent between every compound lottery and the “corresponding”
simple lottery.

This eliminates utility from the thrill of gambling and so the only
ultimate concern is the prizes.

Eric Pacuit 23



Axiom 5

Independence: Suppose that L̂ = [p1 : L1, . . . , Li , . . . , pn : Ln] is a
compound lottery and M is a simple lottery. If Li ≈ M, then

L̂ ≈ [p1 : L1, . . . , pi−1 : Li−1,M, pi+1 : Li+1, . . . , pn : Ln]

Eric Pacuit 24



Fact. For x , y ∈ X , if x � y , then x � [0.5 : y , 0.5 : x ]

Eric Pacuit 25



Are the Axioms Reasonable?

Suppose you have a kitten, which you plan to give away to either Ann or
Bob. Ann and Bob both want the kitten very much. Both are deserving,
and both would care for the kitten. You are sure that giving the kitten to
Ann (x) is at least as good as giving the kitten to Bob (y) (so x � y).
But you think that would be unfair to Bob. You decide to flip a fair coin:
if the coin lands heads, you will give the kitten to Bob, and if it lands
tails, you will give the kitten to Ann. (J. Drier, “Morality and Decision
Theory” in Handbook of Rationality)
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Are the Axioms Reasonable?

Does this contradict the von Neumann-Morgenstern Axioms?

Consider
the lottery which is x for sure (L1) and the lottery which is 0.5 for y and
0.5 for x (L2). The previous fact implies that L1 � L2 but a person
concerned with fairness may have L2 � L1. But if fairness is important
then that should be part of the description of the outcome!
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Give to Ann

L1

x x

0.5 0.5

Fair lottery

L2

y x

0.5 0.5

I x is the outcome “Ann gets the kitten”

I y is the outcome “Bob gets the kitten”
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Give to Ann

L1
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x x
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Give to Ann

L1

�

x x

0.5 0.5

Fair lottery

L2

y z

0.5 0.5

Different outcomes

I x is the outcome “Ann gets the kitten”

I z is the outcome “Ann gets the outcome,
fairly

I y is the outcome “Bob gets the kitten,
fairly”
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Give to Ann

L1

�k

�f

x x

0.5 0.5

Fair lottery

L2

y z

0.5 0.5

Different outcomes

If all the agent cares about is who gets the kit-
ten, then L1 � L2

If all the agent cares about is being fair, then
L1 � L2
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A utility function u : L̂ → R is linear provided

u([p1 : L1, . . . , pn : Ln]) =
∑
i

piu(Li )

Theorem (von Neumann & Morgenstern) If a relation � on L̂ satisfies
axioms 1-5, then there exists a linear utility function u : L̂ → R that
represents �.

Eric Pacuit 29



Subjective Expected Utility

Given an agent’s beliefs (probabilities) and desires (utilities), the
expected utility of an action leading to a set of outcomes X is:

∑
x∈X

[the probability that the act will lead to x ]× [the utility of x ]

Eric Pacuit 30



Savage

Savage derives both a decision maker’s utilities and probabilities from
preferences over acts (a Savage act is a function from states to
outcomes).
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Difficulties

I Attitudes towards risk: the Allais Paradox

I Rabin’s Theorem: the fact that people tend to avoid lotteries
[−$100 : 0.5, $110 : 0.5] is very hard to square with standard
expected utility theory

I Ambiguity aversion: the Ellsberg Paradox

I Kahneman and Tversky: Framing, loss aversion, prospect theory

I Causal vs. Evidential Decision Theory: Newcomb’s Paradox

Eric Pacuit 32



Just enough game theory
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Game Situations

Bob

A
nn

U L R

U 1,1 0,0 U

D 0,0 1,1 U

1. a group of self-interested agents (players) involved in some
interdependent decision problem, and

the players recognize that they are engaged in a game situation
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Just Enough Game Theory

A game is a mathematical model of a strategic interaction that includes

I the actions the players can take

I the players’ interests (i.e., preferences),

I the “structure” of the decision problem

It does not specify the actions that the players do take.
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Solution Concepts

A solution concept is a systematic description of the outcomes that
may emerge in a family of games.

This is the starting point for most of game theory and includes many
variants: Nash equilibrium, backwards induction, or iterated dominance
of various kinds.

These are usually thought of as the embodiment of “rational behavior”
in some way and used to analyze game situations.
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Nash Equilibrium

A strategy profile σ is a (pure strategy) Nash equilibrium provided no
player has an incentive to deviate from his/her choice: for all i and all
si 6= σi :

ui (σ) ≥ ui (si , σ−i )
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Pure Coordination Game

Bob

A
nn

U L R

U 1,1 0,0 U

D 0,0 1,1 U

The profiles (U, L) and (D, R) are Nash equilibria.
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Zero-Sum Games

Bob

A
nn

U L R

U 1,4 4,1 U

D 2,3 3,2 U

CE 2,3 3,2 2

What should Ann do? asdfasdf asdf asdfjasdfasd f asdf asd f asd
fasd
It depends on what she expects Bob to do, but this depends on
what she thinks Bob expects her to do, and so on...
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What should Ann do? Bob best choice in Ann’s worst choiceasdf
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Zero-Sum Games

Bob

A
nn

U L R

U 1,4 4,1 1

D 2,3 3,2 2

CE 2,3 3,2 2

What should Ann do? Security strategy: minimize over each row
and choose the maximum value
It depends on what she expects Bob to do, but this depends on
what she thinks Bob expects her to do, and so on...
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Zero-Sum Games

Bob

A
nn

U L R

U 1,4 4,1 1

D 2,3 3,2 2

CE 3 1 2

What should Bob do? Security strategy: minimize over each column
and choose the maximum value
It depends on what she expects Bob to do, but this depends on
what she thinks Bob expects her to do, and so on...
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Zero-Sum Games

Bob

A
nn

U L R

U 1,4 4,1 1

D 2,3 3,2 2

CE 3 1 2

The profile of security strategies (D, L) is a Nash equilbirium

It depends on what she expects Bob to do, but this depends on
what she thinks Bob expects her to do, and so on...

Eric Pacuit 39



Matching Pennies

Bob

A
nn

U H T

H 1,-1 -1, 1 U

T -1,1 1,-1 U

There are no pure strategy Nash equilibria.
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Mixed Strategies

Bob

A
nn

U H T

H 1,-1 -1, 1 U

T -1,1 1,-1 U

A mixed strategy is a probability distribution over the set of pure
strategies. For instance:

I (1/2H, 1/2T )

I (1/3H, 2/3T )

I ...
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Matching Pennies

Bob

A
nn

U H T

H 1,-1 -1, 1 U

T -1,1 1,-1 U

The mixed strategy ([1/2 : H, 1/2 : T ], [1/2 : H, 1/2 : T ]) is the only
Nash equilibrium.
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Theorem (Von Neumann). For every two-player zero- sum game with
finite strategy sets S1 and S2, there is a number v , called the value of
the game such that:

1. v = maxp∈∆(S1) minq∈∆(S2) U1(p, q) =
minq∈∆(S2) maxp∈∆(S1) U1(p, q)

2. The set of mixed Nash equilibria is nonempty. A mixed strategy
profile (p, q) is a Nash equilibrium if and only if

p ∈ argmaxp∈∆(S1) min
q∈∆(S2)

U1(p, q)

q ∈ argmaxq∈∆(S2) min
p∈∆(S1)

U1(p, q)

3. For all mixed Nash equilibria (p, q), U1(p, q) = v
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Why play such an equilibrium?

“Let us now imagine that there exists a complete theory of the zero-sum
two-person game which tells a player what to do, and which is absolutely
convincing. If the players knew such a theory then each player would
have to assume that his strategy has been “found out” by his opponent.
The opponent knows the theory, and he knows that the player would be
unwise not to follow it... a satisfactory theory can exist only if we are
able to harmonize the two extremes...strategies of player 1 ‘found out’ or
of player 2 ‘found out.’ ” (pg. 148)

J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Prince-
ton University Press, 1944.
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“Von Neumann and Morgenstern are assuming that the payoff matrix is
common knowledge to the players, but presumably the players’ subjective
probabilities might be private. Then each player might quite reasonably
act to maximize subjective expected utility, believing that he will not be
found out, with the result not being a Nash equilibrium.”
ad fasd f (Skyrms, pg. 14)
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Bob

A
nn

U L R

U 1,4 4,1 U

D 2,3 3,2 U

Suppose that Ann believes Bob will play L with probability 1/4, for
whatever reason. Then,

1× 0.25 + 4× 0.75 = 3.25 ≥ 2× 0.25 + 3× 0.75 = 2.75

But, L is maximizes expected utility no matter what belief Bob may
have:

p + 3 = 4× p + 3× (1− p) ≥ 1× p + 2× (1− p) = 2− p
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1× 0.25 + 4× 0.75 = 3.25 ≥ 2× 0.25 + 3× 0.75 = 2.75
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In zero-sum games

I There exists a mixed strategy Nash equilibrium

I There may be more than one Nash equilibria

I Security strategies are always a Nash equilibrium

I Components of Nash equilibria are interchangeable: If σ and σ′ are
Nash equilibria in a 2-player game, then (σ1, σ

′
2) is also a Nash

equilbiria.
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Bob

A
nn

U L C R

T 1, -1 0,0 -1, 1 U

M 0,0 0,0 0,0 U

B -1,1 0,0 1,-1 U

(M,C ) is the unique Nash equilibria. Suppose that both player’s
subjective probabilities are (1/3, 1/3, 1/3), and this is common
knowledge. Then, any choice maximizes the players’ expected utility.
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Suppose that G = (S1, . . . ,Sn, u1, . . . , un) is a strategic game.

A strategy si ∈ Si is a best response to a joint probability
m−i ∈ Πj 6=i∆(Sj) iff Ui (si ,m−i ) ≥ Ui (s

′
i ,m−i ) for all s ′i ∈ Si (here

Ui (·,m−i ) is the expected utility with respect to the joint probability
m−i ).
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Prisoner’s Dilemma

Two people commit a crime.

The are arrested by the police, who are
quite sure they are guilty but cannot prove it without at least one of
them confessing. The police offer the following deal. Each one of them
can confess and get credit for it. If only one confesses, he becomes a
state witness and not only is he not punished, he gets a reward. If both
confess, they will be punished but will get reduced sentences for helping
the police. If neither confesses, the police honestly admit that there is no
way to convict them, and they are set free.

Eric Pacuit 50



Prisoner’s Dilemma

Two people commit a crime. The are arrested by the police, who are
quite sure they are guilty but cannot prove it without at least one of
them confessing.

The police offer the following deal. Each one of them
can confess and get credit for it. If only one confesses, he becomes a
state witness and not only is he not punished, he gets a reward. If both
confess, they will be punished but will get reduced sentences for helping
the police. If neither confesses, the police honestly admit that there is no
way to convict them, and they are set free.

Eric Pacuit 50



Prisoner’s Dilemma

Two people commit a crime. The are arrested by the police, who are
quite sure they are guilty but cannot prove it without at least one of
them confessing. The police offer the following deal. Each one of them
can confess and get credit for it.

If only one confesses, he becomes a
state witness and not only is he not punished, he gets a reward. If both
confess, they will be punished but will get reduced sentences for helping
the police. If neither confesses, the police honestly admit that there is no
way to convict them, and they are set free.

Eric Pacuit 50



Prisoner’s Dilemma

Two people commit a crime. The are arrested by the police, who are
quite sure they are guilty but cannot prove it without at least one of
them confessing. The police offer the following deal. Each one of them
can confess and get credit for it. If only one confesses, he becomes a
state witness and not only is he not punished, he gets a reward.

If both
confess, they will be punished but will get reduced sentences for helping
the police. If neither confesses, the police honestly admit that there is no
way to convict them, and they are set free.

Eric Pacuit 50



Prisoner’s Dilemma

Two people commit a crime. The are arrested by the police, who are
quite sure they are guilty but cannot prove it without at least one of
them confessing. The police offer the following deal. Each one of them
can confess and get credit for it. If only one confesses, he becomes a
state witness and not only is he not punished, he gets a reward. If both
confess, they will be punished but will get reduced sentences for helping
the police.

If neither confesses, the police honestly admit that there is no
way to convict them, and they are set free.

Eric Pacuit 50



Prisoner’s Dilemma

Two people commit a crime. The are arrested by the police, who are
quite sure they are guilty but cannot prove it without at least one of
them confessing. The police offer the following deal. Each one of them
can confess and get credit for it. If only one confesses, he becomes a
state witness and not only is he not punished, he gets a reward. If both
confess, they will be punished but will get reduced sentences for helping
the police. If neither confesses, the police honestly admit that there is no
way to convict them, and they are set free.

Eric Pacuit 50



Prisoner’s Dilemma

Two options: Confess (C ), Don’t Confess (D)

Possible outcomes: We both confess (C ,C ), I confess but my partner
doesn’t (C ,D), My partner confesses but I don’t (D,C ), neither of us
confess (D,D).

Eric Pacuit 51



Prisoner’s Dilemma

Two options: Confess (C ), Don’t Confess (D)

Possible outcomes:

We both confess (C ,C ), I confess but my partner
doesn’t (C ,D), My partner confesses but I don’t (D,C ), neither of us
confess (D,D).

Eric Pacuit 51



Prisoner’s Dilemma

Two options: Confess (C ), Don’t Confess (D)

Possible outcomes: We both confess (C ,C ),

I confess but my partner
doesn’t (C ,D), My partner confesses but I don’t (D,C ), neither of us
confess (D,D).

Eric Pacuit 51



Prisoner’s Dilemma

Two options: Confess (C ), Don’t Confess (D)

Possible outcomes: We both confess (C ,C ), I confess but my partner
doesn’t (C ,D),

My partner confesses but I don’t (D,C ), neither of us
confess (D,D).

Eric Pacuit 51



Prisoner’s Dilemma

Two options: Confess (C ), Don’t Confess (D)

Possible outcomes: We both confess (C ,C ), I confess but my partner
doesn’t (C ,D), My partner confesses but I don’t (D,C ),

neither of us
confess (D,D).

Eric Pacuit 51



Prisoner’s Dilemma

Two options: Confess (C ), Don’t Confess (D)

Possible outcomes: We both confess (C ,C ), I confess but my partner
doesn’t (C ,D), My partner confesses but I don’t (D,C ), neither of us
confess (D,D).

Eric Pacuit 51



Prisoner’s Dilemma

Bob

A
nn

U D C

D 3,3 1,4 U

C 4,1 2,2 U

Ann’s preferences
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Prisoner’s Dilemma

Bob

A
nn

U D C

D 3,3 1,4 U

C 4,1 2,2 U

What should Ann (Bob) do?
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Dominance Reasoning

A

B
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Dominance Reasoning

A

B
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Dominance Reasoning

A

B

> > > > >
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Prisoner’s Dilemma

Bob

A
nn

U D C

D 3,3 1,4 U

C 4,1 2,2 U

What should Ann (Bob) do?

Eric Pacuit 54



Prisoner’s Dilemma

Bob

A
nn

U D C

D 3,3 1,4 U

C 4,1 2,2 U

What should Ann (Bob) do? Dominance reasoning
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Prisoner’s Dilemma

Bob

A
nn

U D C

D 3,3 1,4 U

C 4,1 2,2 U

What should Ann (Bob) do? Dominance reasoning is not Pareto!
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In an arbitrary (finite) games (that are not zero-sum)

I There exists a mixed strategy Nash equilibrium

I Security strategies are not necessarily a Nash equilibrium

I There may be more than on Nash equilibrium

I Components of Nash equilibrium are not interchangeable.
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Chicken

Bob

A
nn

U D S

D -4,-4 1,-1 U

S -1,1 0,0 U

(D,S) and (S ,D) are Nash equilibria. If both choose their components
of these equilibria, we may end up at (D,D).
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Chicken

Bob

A
nn

U D S

D -4,-4 1,-1 U

S -1,1 0,0 U

(D,S) and (S ,D) are Nash equilibria. Their security strategies are
(S ,S).

Eric Pacuit 56



Battle of the Sexes

Bob

A
nn

U B M

B 2, 1 0, 0 U

M 0, 0 1, 2 U

(D,S) and (S ,D) are Nash equilibria. If both choose their components
of these equilibria, we may end up at (D,D).
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Battle of the Sexes

Bob

A
nn

U B M

B 2, 1 0, 0 U

M 0, 0 1, 2 U

(B,B) (M,M), and ([2/3 : B, 1/3 : M], [1/3 : B, 2/3 : M]) are Nash
equilibria.
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Perfect equilibrium

Bob

A
nn

U L R

U 1,1 0,0 U

D 0,0 0,0 U

Completely mixed strategy: a mixed strategy in which every strategy
gets some positive probability

ε-perfect equilibrium: a completely mixed strategy profile in which any
pure strategy that is not a best reply receives probability less than ε

Prefect equilibrium: the mixed strategy profile that is the limit as ε
goes to 0 of ε-prefect equilibria.
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Perfect equilibrium

Bob

A
nn

U L R

U 1,1 0,0 U

D 0,0 0,0 U

Isn’t (U, L) more “reasonable” than (D,R)?which every strategy gets
some positive probability

ε-perfect equilibrium: a completely mixed strategy profile in which any
pure strategy that is not a best reply receives probability less than ε

Prefect equilibrium: the mixed strategy profile that is the limit as ε
goes to 0 of ε-prefect equilibria.
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Completely mixed strategy: a mixed strategy in which every strategy
gets some positive probability

ε-perfect equilibrium: a completely mixed strategy profile in which any
pure strategy that is not a best reply receives probability less than ε
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Proper equilibrium

Bob

A
nn

U L C R

U -9,-9 -7,-7 -7,-7 U

M 0,0 0,0 -7,-7 U

D 1,1 0,0 -9,-9 U

ε-perfect equilibrium: a completely mixed strategy profile in which any
pure strategy that is not a best reply receives probability less than ε

Prefect equilibrium: the mixed strategy profile that is the limit as ε
goes to 0 of ε-prefect equilibria.
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Proper equilibrium

Bob

A
nn

U L C R

U -9,-9 -7,-7 -7,-7 U

M 0,0 0,0 -7,-7 U

D 1,1 0,0 -9,-9 U

ε-proper equilibrium: a completely mixed strategy profile such that if
strategy s is a better response than s ′, then p(s)

p(s′) < ε

Proper equilibrium: the mixed strategy profile that is the limit as ε goes
to 0 of ε-proper equilibria.
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Trembling Hands

“There cannot be any mistakes if the players are absolutely rational.
Nevertheless, a satisfactory interpretation of equilibrium points in
extensive games seems to require that the possibility of mistakes is not
completely excluded. This can be achieved by a point of view which
looks at complete rationality as the limiting case of incomplete
rationality.” (pg. 35)

R. Selten. Reexamination of the Perfectness Concept of Equilibrium in Extensive Games.
International Journal of Game Theory, 4, pgs. 25 - 55, 1975.
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Setting the stage: Epistemic game theory
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Knowledge and beliefs in game situations

J. Harsanyi. Games with incomplete information played by “Bayesian” players I-III.
Management Science Theory 14: 159-182, 1967-68.

Robert Aumann. Agreeing to Disagree. Annals of Statistics 4 (1976).

R. Aumann. Interactive Epistemology I & II. International Journal of Game Theory
(1999).

P. Battigalli and G. Bonanno. Recent results on belief, knowledge and the epistemic
foundations of game theory. Research in Economics (1999).

R. Myerson. Harsanyi’s Games with Incomplete Information. Special 50th anniversary
issue of Management Science, 2004.
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John C. Harsanyi, nobel prize winner in economics, developed a theory of
games with incomplete information.

1. incomplete information: uncertainty about the structure of the game
(outcomes, payoffs, strategy space)

2. imperfect information: uncertainty within the game about the
previous moves of the players

J. Harsanyi. Games with incomplete information played by “Bayesian” players I-III.
Management Science Theory 14: 159-182, 1967-68.
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Harsanyi’s Problem

A natural question following any game-theoretic analysis is

how would
the players react if some parameters of the model are not known to the
players? How do we completely specify such a model?

1. Suppose there is a parameter that some player i does not know

2. i ’s uncertainty about the parameter must be included in the model
(first-order beliefs)

3. this is a new parameter that the other players may not know, so we
must specify the players beliefs about this parameter (second-order
beliefs)

4. but this is a new parameter, and so on....
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Harsanyi’s Problem

A (game-theoretic) type of a player summarizes everything the player
knows privately at the beginning of the game which could affect his
beliefs about payoffs in the game and about all other players’ types.

(Harsanyi argued that all uncertainty in a game can be equivalently
modeled as uncertainty about payoff functions.)
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Information in games situations

I imperfect information about the play of the game

I incomplete information about the structure of the game

I strategic information (what will the other players do?)

I higher-order information (what are the other players thinking?)
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Epistemic Game Theory

Formally, a game is described by its strategy sets and payoff
functions.

But in real life, may other parameters are relevant;
there is a lot more going on. Situations that substantively are
vastly different may nevertheless correspond to precisely the
same strategic game....
The difference lies in the attitudes of the players, in their
expectations about each other, in custom, and in history,
though the rules of the game do not distinguish between the
two situations. (pg. 72)

R. Aumann and J. H. Dreze. Rational Expectations in Games. American Economic
Review 98 (2008), pp. 72-86.
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The Epistemic Program in Game Theory

“...the analysis constitutes a fleshing-out of the textbook interpretation
of equilibrium as ‘rationality plus correct beliefs.’...this suggests that
equilibrium behavior cannot arise out of strategic reasoning alone. ”

E. Dekel and M. Siniscalchi. Epistemic Game Theory. manuscript, 2013.

A. Brandenburger. The Power of Paradox. International Journal of Game Theory, 35,
pgs. 465 - 492, 2007.

EP and O. Roy. Epistemic Game Theory. Stanford Encyclopedia of Philosophy, forth-
coming, 2013.
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The Epistemic Program in Game Theory

Game G

Strategy Space

Ann’s States Bob’s States

G : available actions, payoffs, structure of the decision problem
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The Epistemic Program in Game Theory

Game G

Strategy Space

Ann’s States Bob’s States

solution concepts are systematic descriptions of what players do
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The Epistemic Program in Game Theory

Game G

Strategy Space

Ann’s States Bob’s States

The game model includes information states of the players
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The Epistemic Program in Game Theory

Game G

Strategy Space

Ann’s States Bob’s States

Restrict to information states satisfying some rationality condition
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The Epistemic Program in Game Theory

Game G

Strategy Space

Ann’s States Bob’s States

Project onto the strategy space
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Information in games situations

I Various states of information disclosure.

• ex ante, ex interim, ex post

I Various “types” of information:

• imperfect information about the play of the game
• incomplete information about the structure of the game
• strategic information (what will the other players do?)
• higher-order information (what are the other players thinking?)

I Varieties of informational attitudes

• hard (“knowledge”)
• soft (“beliefs”)
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Two key assumptions

1. The players recognize that they are in a game situation

2. The players agree on a common initial model

Ann’s States Bob’s States
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Game G

Strategy Space

Game Model

Rat ¬Rat

sb

a

I Each state in a game model is
associated with a strategy
profile and a description of the
players beliefs.

I Rat is event that the players
optimize (and there is common
belief that they optimize)

I “The viewpoint is descriptive.
Not ‘why,’ not ‘should,’ just
what. Not that i does a
because he believes E ; simply
that he does a and believes E .”

Eric Pacuit 71



Harsanyi Type Space

Based on the work of John Harsanyi on games with incomplete
information, game theorists have developed an elegant formalism that
makes precise talk about beliefs, knowledge and rationality:

A type is everything a player knows privately at the beginning of the
game which could affect his beliefs about payoffs and about all
other players’ possible types.

Each type is assigned a joint probability over the space of types and
actions

λi : Ti → ∆(T−i × S−i )

The other players’ types
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Based on the work of John Harsanyi on games with incomplete
information, game theorists have developed an elegant formalism that
makes precise talk about beliefs, knowledge and rationality:

I A type is everything a player knows privately at the beginning of the
game which could affect his beliefs about payoffs and about all
other players’ possible types.

I Each type is assigned a joint probability over the space of types and
actions

λi : Ti → ∆(T−i × S−i )

The other players’ choices
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Returning to the Example: A Game Model

Bob

A
nn

U H M

H 3,3 0,0

M 0,0 1,1

One type for Ann (tA) and two types
for Bob (tB , uB)

A state is a tuple of choices and
types: (M, tA,M, uB)

Calculate expected utility in the usual
way...

tA

U H M

tB 0 0.5

uB 0.2 0.3
tB

U H M

tA 0 1

uB

U H M

tA 0.4 0.6
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Returning to the Example: A Game Model

Bob

A
nn

U H M

H 3,3 0,0

M 0,0 1,1
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Bob is rational
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Bob thinks Ann is irrational
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I M is rational for Bob (tB)
0 · 0 + 1 · 1 ≥ 3 · 0 + 0 · 1

I Ann thinks Bob may be irrational
PB(Irrat(Ann)) = 0.xx
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M 0,0 1,1

I M is rational for Ann (tA)
0 · 0.2 + 1 · 0.8 ≥ 3 · 0.2 + 0 · 0.8

I M is rational for Bob (tB)
0 · 0 + 1 · 1 ≥ 3 · 0 + 0 · 1

I Ann thinks Bob may be irrational
PA(Irrat[B]) = 0.3, PA(Rat[B]) = 0.7

tA

U H M

tB 0 0.5

uB 0.2 0.3
tB

U H M

tA 0 1

uB

U H M

tA 0.4 0.6
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“Common Knowledge” is informally described as what any fool would
know, given a certain situation: It encompasses what is relevant, agreed
upon, established by precedent, assumed, being attended to, salient, or in
the conversational record.

It is not Common Knowledge who “defined” Common Knowledge!
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The first formal definition of common knowledge?
M. Friedell. On the Structure of Shared Awareness. Behavioral Science (1969).

R. Aumann. Agreeing to Disagree. Annals of Statistics (1976).

The first rigorous analysis of common knowledge
D. Lewis. Convention, A Philosophical Study. 1969.

Fixed-point definition: γ := i and j know that (ϕ and γ)
G. Harman. Review of Linguistic Behavior. Language (1977).

J. Barwise. Three views of Common Knowledge. TARK (1987).

Shared situation: There is a shared situation s such that (1) s entails
ϕ, (2) s entails everyone knows ϕ, plus other conditions
H. Clark and C. Marshall. Definite Reference and Mutual Knowledge. 1981.

M. Gilbert. On Social Facts. Princeton University Press (1989).
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P. Vanderschraaf and G. Sillari. “Common Knowledge”, The Stanford Encyclopedia of
Philosophy (2009).
http://plato.stanford.edu/entries/common-knowledge/.
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E

W

W is a set of states or worlds.

Eric Pacuit 76



E

W

An event/proposition is any (definable) subset E ⊆W
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E

W

The agents receive signals in each state. States are
considered equivalent for the agent if they receive the
same signal in both states.
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E

W

Knowledge Function: Ki : ℘(W ) → ℘(W ) where
Ki (E ) = {w | Ri (w) ⊆ E}
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E

W

w

w ∈ KA(E ) and w 6∈ KB(E )
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E

W

w

The model also describes the agents’ higher-order
knowledge/beliefs
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E

W

w

Everyone Knows: K (E ) =
⋂

i∈A Ki (E ), K 0(E ) = E ,
Km(E ) = K (Km−1(E ))
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E

W

w

Common Knowledge: C : ℘(W )→ ℘(W ) with

C (E ) =
⋂
m≥0

Km(E )
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w

w ∈ K (E ) w 6∈ C (E )
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E

W

w

w ∈ C (E )
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E

W

w

Fact. w ∈ C (E ) if every finite path starting at w ends
in a state in E
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An Example

Two players Ann and Bob are told that the following will happen. Some
positive integer n will be chosen and one of n, n + 1 will be written on
Ann’s forehead, the other on Bob’s. Each will be able to see the other’s
forehead, but not his/her own.

Suppose the number are (2,3).

Do the agents know there numbers are less than 1000?

Is it common knowledge that their numbers are less than 1000?
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(0,1) (2,1)

(2,3) (4,3)

(4,5) (6,5)

(6,7)

A

B

A

B

A

B
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Fact. For all i ∈ A and E ⊆W , KiC (E ) = C (E ).
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Fact. For all i ∈ A and E ⊆W , KiC (E ) = C (E ).

Suppose you are told “Ann and Bob are going together,”’ and
respond “sure, that’s common knowledge.” What you mean is
not only that everyone knows this, but also that the
announcement is pointless, occasions no surprise, reveals
nothing new; in effect, that the situation after the
announcement does not differ from that before. ...the event
“Ann and Bob are going together” — call it E — is common
knowledge if and only if some event — call it F — happened
that entails E and also entails all players’ knowing F (like all
players met Ann and Bob at an intimate party). (Aumann, pg.
271, footnote 8)
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Fact. For all i ∈ A and E ⊆W , KiC (E ) = C (E ).

An event F is self-evident if Ki (F ) = F for all i ∈ A.

Fact. An event E is commonly known iff some self-evident event that
entails E obtains.

Eric Pacuit 79



Fact. For all i ∈ A and E ⊆W , KiC (E ) = C (E ).

An event F is self-evident if Ki (F ) = F for all i ∈ A.

Fact. An event E is commonly known iff some self-evident event that
entails E obtains.

Fact. w ∈ C (E ) if every finite path starting at w ends in a state in E

The following axiomatize common knowledge:

I C (ϕ→ ψ)→ (Cϕ→ Cψ)

I Cϕ→ (ϕ ∧ ECϕ) (Fixed-Point)

I C (ϕ→ Eϕ)→ (ϕ→ Cϕ) (Induction)
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The Fixed-Point Definition

fE (X ) = K (E ∩ X ) =
⋂

i∈A Ki (E ∩ X )

I C (E ) is a fixed point of fE : fE (C (E )) = K (E ∩ C (E )) =
K (C (E )) =

⋂
i∈A Ki (C (E )) =

⋂
i∈A C (E ) = C (E )

I The are other fixed points of fE : fE (⊥) = ⊥

I fE is monotonic: A ⊆ B implies E ∩ A ⊆ E ∩ B. Then
fE (E ∩ A) = K (E ∩ A) ⊆ K (E ∩ B) = fE (E ∩ B)

I (Tarski) Every monotone operator has a greatest (and least) fixed
point

I Let K ∗(E ) be the greatest fixed point of fE .

I Fact. K ∗(E ) = C (E ).
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The Fixed-Point Definition

Separating the fixed-point/iteration definition of common
knowledge/belief:

J. Barwise. Three views of Common Knowledge. TARK (1987).

J. van Benthem and D. Saraenac. The Geometry of Knowledge. Aspects of Universal
Logic (2004).

A. Heifetz. Iterative and Fixed Point Common Belief. Journal of Philosophical Logic
(1999).
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