Notes on the Proof of Arrow's Theorem

Eric Pacuit*

March 24, 2014

The candidates and voters

- X is a set of candidates and N is a set of voters.
- |X| > 2 (there are more than 2 candidates) and |N| = n (there are finitely many voters)

Preferences

- A preference relation on X is a relation $R \subseteq X \times X$ such that for all $a, b \in X$:
 - Reflexivity: a R a
 - **Transitivity**: if $a \ R \ b$ and $b \ R \ c$, then $a \ R \ c$
 - Connectedness: $a \ R \ b$ or $b \ R \ a$
- Let R be a preference relation, define two preference relations:
 - Strict Preference: a P b := a R b and $b \not R a$
 - Indifference Relation: $a \ I \ b := a \ R \ b$ and $b \ R \ a$
- Preference, Strict Preference and Indifference relations satisfy the following properties:
 - − Strict preference P is a strict order (it is transitive and irreflexive: for all $a \in X$, $a \not P a$)
 - Indifference I is an equivalence relation (reflexive, transitive and symmetric: for all $a,b\in X,$ if $a\ I\ b,$ then $b\ I\ a)$
 - Trichotomy: for all $a, b \in X$, either a P b or b P a or a I b
 - Absorption: for all $a, b, c, d \in X$, if $(a \ I \ b \text{ and } b \ P \ c \text{ and } c \ I \ d)$, then $a \ P \ d$

^{*}epacuit@umd.edu

Profiles

- A profile p for the voters N, is a sequence of preference orderings of length n, I.e., a profile is an element of $O(X)^n$, we denote profile $p \in O(X)^n$ as follows $p = (R_1, \ldots, R_n)$.
- Given a profile p, let p_i denote *i*'s preference ordering in p and $p_i^>$ denote *i*'s strict preference ordering.
- For Y ⊆ X, let p|_Y be the profile of preference orderings restricted to the candidates in Y.
- Let $U \subseteq N$ be a set of voters and $a, b \in X$ and $p \in O(X)^n$ a profile, let

$$a p_U^{\geq} b$$
 iff for all $i \in U$, $a p_i^{\geq} b$

I.e., $a p_U^{>} b$ means all voters in U strictly prefer a over b.

- Let \mathcal{D} be the set of *possible* profiles (i.e., $\mathcal{D} \subseteq O(X)^n$)
- Suppose that $U \subseteq N$ is a set of voters. For $a, b \in X$, let

$$U_{ab} = \{ p \in \mathcal{D} \mid a \ p_U^> b \text{ and } b \ p_{U^C}^> a \}$$

where $U^C = \{i \in N \mid i \notin U\}$ is the complement of U.

Example: Suppose that there are three candidates $X = \{a, b, c\}$ and three voters $\{1, 2, 3\}$. Let p, q, r be the following three profiles (each voter has a strict preference over the candidates with the most preferred candidates at the top of the list):

You should verify that the following are true:

- For $U = \{1, 3\}$: $a \ p_U^> b$, $a \ q_U^> c$, $b \ q_U^> c$, $a \ r_U^> c$, $b \ r_U^> c$, and $b \ s_U^> c$
- $a q_N^> c$, $b q_N^> c$, and $b r_N^> c$
- For $V = \{1, 2\}, p \in V_{bc},$
- $b q_V^> c$ but $q \notin V_{bc}$, and $a s_V^> c$ but $s \notin V_{ac}$

Social welfare functions

- A social welfare function is a function $F : \mathcal{D} \to O(X)$ assigning an ordering to each profile $p \in \mathcal{D}$.
- As above, $F(p)^{>}$ denotes the strict subrelation of F(p).
- Fix a function $F : \mathcal{D} \to O(X)$. Define a relation $D_U \subseteq X \times X$ on the candidates for each $U \subseteq N$ as follows

$$a D_U b$$
 iff $a \neq b$ and for all $p \in U_{ab}$, $a F(p)^> b$

• Fix a function $F : \mathcal{D} \to O(X)$. Define a relation $E_U \subseteq X \times X$ on the candidates for each $U \subseteq N$ as follows

 $a E_U b$ iff for all $p \in \mathcal{D}$, if $a p_U^> b$, then $a F(p)^> b$

Arrow's axioms

- Universal Domain For all $p \in L(\{a, b, c\})^n$, there exist $q \in \mathcal{D}$ such that $q|_{\{a, b, c\}} = p$
- Weak Pareto For all $p \in \mathcal{D}$, if $a p_N^> b$, then a F(p) b
- **Pareto** For all $p \in \mathcal{D}$, if $a p_N^> b$, then $a F(p)^> b$
- Independence of Irrelevant Alternatives For all $a, b \in X$, for all $p, q \in \mathcal{D}$, if $p|_{\{a,b\}} = q|_{\{a,b\}}$, then $F(p)|_{\{a,b\}} = F(q)|_{\{a,b\}}$

Arrovian dictator

- A voter $d \in N$ is a dictator if and only if for all profile $p \in \mathcal{D}$, for all candidates $a, b \in X$, if $a p_i^> b$, then $a F(p)^> b$.
- A voter $d \in N$ is a dictator iff for all $a, b \in X$, $a \in E_{\{d\}} b$.
- A social welfare function is a **dictatorship** provided there is a dictator.
- An example of a social welfare function that is a dictatorship (where voter i is a dictator) is $F_i(p) = p_i$ for all $p \in \mathcal{D}$. However, note that there are other functions that qualify as dictatorships. All that is required is that there is a voter d such that for any two candidates a, b if d ranks a above b, then society must rank a above b.

The theorem

Proposition 1 For all $a, b, c \in X$,

- If $c \neq a$, then if a $D_U b$, then a $D_U c$
- If $c \neq b$, then if a $D_U b$, then $c D_U b$

Lemma 2 Suppose that R is an irreflexive relation on a set X with at least three elements such that, for all $a, b \in X$:

- 1. If $x \neq a$, then a R b implies a R x, and
- 2. If $x \neq b$, then a R b implies x R b.

Then, if $x, y \in X$ are distinct, then a R b implies x R y.

Proof. Suppose that R is an irreflexive relation on X and $a, b, x, y \in X$. Further, suppose that (1) and (2) hold. Suppose that a R b. Then, since R is irreflexive, $a \neq b$. We have three cases:

- 1. $y \neq a$: Then, a R b implies a R y (by 1.). Furthermore, a R y implies x R y (by 2. since $x \neq y$)
- 2. $x \neq b$: Then, a R b implies x R b (by 2.). Furthermore, x R b implies x R y (by 1. since $x \neq y$)
- 3. y = a and x = b: Then, we must show $a \ R \ b$ implies $b \ R \ a$. Since X has at least three elements, there is a $c \in X$ such that $c \neq a$ and $c \neq b$. Then, $a \ R \ b$ implies $a \ R \ c$ (by 1. since $c \neq a$). Furthermore, $a \ R \ c$ implies $b \ R \ c$ (by 2. since $b \neq c$). Finally, $b \ R \ c$ implies $b \ R \ a$ (by 1. since $a \neq b$).

QED

Proposition 3 For all $a, b, x, y \in X$ with $x \neq y$: if $a D_U b$ then $x D_U y$.

Proof. This is an immediate consequence of Proposition 1 and Lemma 2. QED

Proposition 4 For all $a, b \in X$, $a D_U b$ iff $a E_U b$

The decisive sets: $\mathcal{U} = \{ U \mid \text{ there are } a, b \in X \text{ such that } a D_U b \}$

Proposition 5 The following are properties of \mathcal{U} :

- 1. For all $U \subseteq N$, either $U \in \mathcal{U}$ or $U^C \in \mathcal{U}$
- 2. $N \in \mathcal{U}$
- 3. For all $U, V \subseteq N$, if $U \in \mathcal{U}$ and $U \subseteq V$, then $V \in \mathcal{U}$.
- 4. For all $U, V \in \mathcal{U}, U \cap V \in \mathcal{U}$.

Theorem 6 (Arrow's Theorem) Assuming there are finitely man voters, at least three candidates, and all of Arrow's Axioms, there is a voter $d \in N$ such that $\{d\} \in \mathcal{U}$.

Proof. We will show that there is some $d \in N$ such that $\{d\} \in \mathcal{U}$. Suppose that $N = \{1, 2, ..., n\}$. By Proposition 5 (2), we have $N \in \mathcal{U}$ (so \mathcal{U} is nonempty). By Proposition 5 (1), we have

- 1. either $\{1\} \in \mathcal{U}$ or $\{2, 3, ..., n\} \in \mathcal{U}$. If $\{1\} \in \mathcal{U}$, then we are done (let d = 1). If not, then $\{2, 3, ..., n\} \in \mathcal{U}$.
- 2. either $\{2\} \in \mathcal{U}$ or $\{1, 3, \ldots, n\} \in \mathcal{U}$. If $\{2\} \in \mathcal{U}$, then we are done (let d = 2). If not, then $\{1, 3, \ldots, n\} \in \mathcal{U}$.

n-1. either $\{n-1\} \in \mathcal{U}$ or $\{1, 2, \dots, n-2, n\} \in \mathcal{U}$. If $\{n-1\} \in \mathcal{U}$, then we are done (let d = n-1). If not, then $\{1, 2, \dots, n-2, n\} \in \mathcal{U}$.

If we have not found a dictator in any of the 1 to n-1 cases, then by proposition 5 (4),

$$\{n\} = \bigcap_{i=1}^{n-1} N - \{i\} = \{2, 3, \dots, n\} \cap \{1, 3, \dots, n\} \cap \dots \cap \{1, 2, 3, \dots, n-2, n\} \in \mathcal{U}$$

QED

[÷]