Notes on the Proof of Arrow's Theorem

Eric Pacuit*

March 24, 2014

The candidates and voters

- X is a set of candidates and N is a set of voters.
- $|X|>2$ (there are more than 2 candidates) and $|N|=n$ (there are finitely many voters)

Preferences

- A preference relation on X is a relation $R \subseteq X \times X$ such that for all $a, b \in X$:
- Reflexivity: $a R a$
- Transitivity: if $a R b$ and $b R c$, then $a R c$
- Connectedness: $a R b$ or $b R a$
- Let R be a preference relation, define two preference relations:
- Strict Preference: $a P b:=a R b$ and $b \not R a$
- Indifference Relation: $a I b:=a R b$ and $b R a$
- Preference, Strict Preference and Indifference relations satisfy the following properties:
- Strict preference P is a strict order (it is transitive and irreflexive: for all $a \in X$, $a \not P a)$
- Indifference I is an equivalence relation (reflexive, transitive and symmetric: for all $a, b \in X$, if $a I b$, then $b I a$)
- Trichotomy: for all $a, b \in X$, either $a P b$ or $b P a$ or $a I b$
- Absorption: for all $a, b, c, d \in X$, if ($a I b$ and $b P c$ and $c I d$), then $a P d$

[^0]
Profiles

- A profile p for the voters N, is a sequence of preference orderings of length n, I.e., a profile is an element of $O(X)^{n}$, we denote profile $p \in O(X)^{n}$ as follows $p=\left(R_{1}, \ldots, R_{n}\right)$.
- Given a profile p, let p_{i} denote i 's preference ordering in p and $p_{i}^{>}$denote i 's strict preference ordering.
- For $Y \subseteq X$, let $\left.p\right|_{Y}$ be the profile of preference orderings restricted to the candidates in Y.
- Let $U \subseteq N$ be a set of voters and $a, b \in X$ and $p \in O(X)^{n}$ a profile, let

$$
a p_{U}^{>} b \text { iff for all } i \in U, a p_{i}^{>} b
$$

I.e., $a p_{U}^{>} b$ means all voters in U strictly prefer a over b.

- Let \mathcal{D} be the set of possible profiles (i.e., $\left.\mathcal{D} \subseteq O(X)^{n}\right)$
- Suppose that $U \subseteq N$ is a set of voters. For $a, b \in X$, let

$$
U_{a b}=\left\{p \in \mathcal{D} \mid a p_{U}^{>} b \text { and } b p_{U^{C}}^{>} a\right\}
$$

where $U^{C}=\{i \in N \mid i \notin U\}$ is the complement of U.
Example: Suppose that there are three candidates $X=\{a, b, c\}$ and three voters $\{1,2,3\}$. Let p, q, r be the following three profiles (each voter has a strict preference over the candidates with the most preferred candidates at the top of the list):

$$
\begin{aligned}
& p: \begin{array}{lll}
\begin{array}{ll}
1 & 2
\end{array} & 3 \\
a & b & c \\
b & c & a \\
c & a & b
\end{array} \quad q: \begin{array}{lll}
\begin{array}{lll}
1 & 2 & 3 \\
a & b & a \\
b & a & b \\
c & c & c
\end{array}
\end{array} \quad r: \begin{array}{lll}
\begin{array}{l}
1 \\
b
\end{array} & 2 & 3 \\
a & a \\
a & c & b \\
c & a & c
\end{array} \\
& \text { 1: } a I b P c \\
& \text { 3: } \quad b \text { PcIa }
\end{aligned}
$$

Finally, let s be the profile 2: $a P b I c$

You should verify that the following are true:

- For $U=\{1,3\}: a p_{U}^{>} b, \quad a q_{U}^{>} b, a q_{U}^{>} c, b q_{U}^{>} c, a r_{U}^{>} c, b r_{U}^{>} c, \quad$ and $b s_{U}^{>} c$
- $a q_{N}^{>} c, \quad b q_{N}^{>} c, \quad$ and $\quad b r_{N}^{>} c$
- For $V=\{1,2\}, \quad p \in V_{b c}$,
- $b q_{V}^{>} c$ but $q \notin V_{b c}$, and $a s_{V}^{>} c$ but $s \notin V_{a c}$

Social welfare functions

- A social welfare function is a function $F: \mathcal{D} \rightarrow O(X)$ assigning an ordering to each profile $p \in \mathcal{D}$.
- As above, $F(p)^{>}$denotes the strict subrelation of $F(p)$.
- Fix a function $F: \mathcal{D} \rightarrow O(X)$. Define a relation $D_{U} \subseteq X \times X$ on the candidates for each $U \subseteq N$ as follows

$$
a D_{U} b \text { iff } a \neq b \text { and for all } p \in U_{a b}, a F(p)^{>} b
$$

- Fix a function $F: \mathcal{D} \rightarrow O(X)$. Define a relation $E_{U} \subseteq X \times X$ on the candidates for each $U \subseteq N$ as follows

$$
a E_{U} b \text { iff for all } p \in \mathcal{D} \text {, if } a p_{U}^{>} b, \text { then } a F(p)^{>} b
$$

Arrow's axioms

- Universal Domain For all $p \in L(\{a, b, c\})^{n}$, there exist $q \in \mathcal{D}$ such that $\left.q\right|_{\{a, b, c\}}=p$
- Weak Pareto For all $p \in \mathcal{D}$, if $a p_{N}^{>} b$, then $a F(p) b$
- Pareto For all $p \in \mathcal{D}$, if $a p_{N}^{>} b$, then $a F(p)^{>} b$
- Independence of Irrelevant Alternatives For all $a, b \in X$, for all $p, q \in \mathcal{D}$, if $\left.p\right|_{\{a, b\}}=\left.q\right|_{\{a, b\}}$, then $\left.F(p)\right|_{\{a, b\}}=\left.F(q)\right|_{\{a, b\}}$

Arrovian dictator

- A voter $d \in N$ is a dictator if and only if for all profile $p \in \mathcal{D}$, for all candidates $a, b \in X$, if $a p_{i}^{>} b$, then $a F(p)^{>} b$.
- A voter $d \in N$ is a dictator iff for all $a, b \in X, a E_{\{d\}} b$.
- A social welfare function is a dictatorship provided there is a dictator.
- An example of a social welfare function that is a dictatorship (where voter i is a dictator) is $F_{i}(p)=p_{i}$ for all $p \in \mathcal{D}$. However, note that there are other functions that qualify as dictatorships. All that is required is that there is a voter d such that for any two candidates a, b if d ranks a above b, then society must rank a above b.

The theorem

Proposition 1 For all $a, b, c \in X$,

- If $c \neq a$, then if $a D_{U} b$, then a $D_{U} c$
- If $c \neq b$, then if $a D_{U} b$, then $c D_{U} b$

Lemma 2 Suppose that R is an irreflexive relation on a set X with at least three elements such that, for all $a, b \in X$:

1. If $x \neq a$, then $a R b$ implies $a R x$, and
2. If $x \neq b$, then $a R b$ implies $x R b$.

Then, if $x, y \in X$ are distinct, then a R b implies $x R y$.
Proof. Suppose that R is an irreflexive relation on X and $a, b, x, y \in X$. Further, suppose that (1) and (2) hold. Suppose that $a R b$. Then, since R is irreflexive, $a \neq b$. We have three cases:

1. $y \neq a$: Then, $a R b$ implies $a R y$ (by 1.). Furthermore, $a R y$ implies $x R y$ (by 2 . since $x \neq y$)
2. $x \neq b$: Then, $a R b$ implies $x R b$ (by 2.). Furthermore, $x R b$ implies $x R y$ (by 1 . since $x \neq y$)
3. $y=a$ and $x=b$: Then, we must show $a R b$ implies $b R a$. Since X has at least three elements, there is a $c \in X$ such that $c \neq a$ and $c \neq b$. Then, $a R b$ implies $a R c$ (by 1. since $c \neq a$). Furthermore, $a R c$ implies $b R c$ (by 2. since $b \neq c$). Finally, $b R c$ implies $b R a$ (by 1 . since $a \neq b$).

QED

Proposition 3 For all $a, b, x, y \in X$ with $x \neq y$: if a $D_{U} b$ then $x D_{U} y$.
Proof. This is an immediate consequence of Proposition 1 and Lemma 2.

Proposition 4 For all $a, b \in X, a D_{U} b$ iff $a E_{U} b$

The decisive sets: $\mathcal{U}=\left\{U \mid\right.$ there are $a, b \in X$ such that $\left.a D_{U} b\right\}$

Proposition 5 The following are properties of \mathcal{U} :

1. For all $U \subseteq N$, either $U \in \mathcal{U}$ or $U^{C} \in \mathcal{U}$
2. $N \in \mathcal{U}$
3. For all $U, V \subseteq N$, if $U \in \mathcal{U}$ and $U \subseteq V$, then $V \in \mathcal{U}$.
4. For all $U, V \in \mathcal{U}, U \cap V \in \mathcal{U}$.

Theorem 6 (Arrow's Theorem) Assuming there are finitely man voters, at least three candidates, and all of Arrow's Axioms, there is a voter $d \in N$ such that $\{d\} \in \mathcal{U}$.

Proof. We will show that there is some $d \in N$ such that $\{d\} \in \mathcal{U}$. Suppose that $N=$ $\{1,2, \ldots, n\}$. By Proposition 5 (2), we have $N \in \mathcal{U}$ (so \mathcal{U} is nonempty). By Proposition 5 (1), we have

1. either $\{1\} \in \mathcal{U}$ or $\{2,3, \ldots, n\} \in \mathcal{U}$. If $\{1\} \in \mathcal{U}$, then we are done (let $d=1$). If not, then $\{2,3, \ldots, n\} \in \mathcal{U}$.
2. either $\{2\} \in \mathcal{U}$ or $\{1,3, \ldots, n\} \in \mathcal{U}$. If $\{2\} \in \mathcal{U}$, then we are done (let $d=2$). If not, then $\{1,3, \ldots, n\} \in \mathcal{U}$.
$n-1$. either $\{n-1\} \in \mathcal{U}$ or $\{1,2, \ldots, n-2, n\} \in \mathcal{U}$. If $\{n-1\} \in \mathcal{U}$, then we are done (let $d=n-1$). If not, then $\{1,2, \ldots, n-2, n\} \in \mathcal{U}$.

If we have not found a dictator in any of the 1 to $n-1$ cases, then by proposition 5 (4),

$$
\{n\}=\bigcap_{i=1}^{n-1} N-\{i\}=\{2,3, \ldots, n\} \cap\{1,3, \ldots, n\} \cap \cdots \cap\{1,2,3 \ldots, n-2, n\} \in \mathcal{U}
$$

[^0]: *epacuit@umd.edu

