Chapter 3
Review of Paradoxes Afflicting Procedures
for Electing a Single Candidate

Dan S. Felsenthal

3.1 Introduction

Three factors motivated me to write this chapter:

« The recent passage (25 February 2010) by the British House of Commons of
the Constitutional Reform and Governance Bill, clause #29 of which states that
a referendum will be held by 31 October 2011 on changing the current single
member plurality (aka first-past-the-post, briefly FPTP) electoral procedure for
electing the British House of Commons (o the (highly paradoxical) alternative
vote (AV) procedure (aka Instant Runoff).! Similar calls for adopting the
alternative vote procedure are voiced also in the US.

» My assessment that both the UK and the US will continue to elect their legisla-
tures from single-member constituencies, but that there exist, from the point of
view of social-choice theory, considerably more desirable voting procedures for
electing a single candidate than the FPTP and AV procedures.

+ A recent report by Hix et al. (2010) - commissioned by the British Academy
and entitled Choosing an Electoral System — that makes no mention of standard
social-choice criteria for assessing electoral procedures designed to elect one out

of two or more candidates.

IFollowing the general elections heid in the UK on 6 May 2010, a coalition government has
been formed between the Conservative and Liberal-Democratic parties in which the two parties
committed to hold a refetendum on the possible change of the clection procedure to the House of
Commons from FPTP to AV. In the referendum held on 5 May 2011 it was decided to keep the

FPTP procedure.
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I therefore thought it would be well to supplement that report by reminding social
choice theorists, political scientists, as well as commentators, policymakers and
interested laymen — especially in the UK and the US - of the main social-choice
properties by which voting procedures for the election of one out of two or more
candidates ought to be assessed, and to list and exemplify the paradoxes afflicting
these voting procedures.

Thus this paper should be regarded as an updated review by which to assess from
a social-choice perspective the main properties of various known voting procedures
for the election of a single candidate.

Of the 18 (deterministic) voting procedures analyzed in this paper, the
Condorcet-consistent procedures proposed by Copeland (1951) and by Kemeny
(1969) seem to me to be the most desirable from a social-choice perspective for
electing one out of several candidates.

The paper is organized as follows: In Sect. 3.2 I survey 15 paradoxes, several of
which may afflict any of the 18 voting procedures that are described in Sect. 3.3.
Section 3.4 summarizes and presents additional technical-administrative criteria
which should be used in assessing the relative desirability of a voting procedure.
In the detailed appendix in Sect. 3.5 I exemplify most of the paradoxes to which
each of the surveyed election procedures is susceptible.

3.2 Voting Paradoxes

I define a “voting paradox” as an undesirable outcome that a voting procedure may
produce and which may be regarded at first glance, at least by some people, as
surprising or as counter-intuitive.

I distinguish between two types of voting paradoxes associated with a given
voting procedure:

1. “Simple” or “Straightforward” paradoxes: These are paradoxes where the rele-
vant data leads to a “surprising” and arguably undesirable outcome. (The relevant
data include, inter alia, the number of voters, the number of candidates, the
number of candidates that must be elected, the preference ordering of every
volter among the competing candidates, the amount of information voters have
regarding all other voters’ preference orderings, the order in which voters cast
their votes if it is not simultaneous, the order in which candidates are voted upon
if candidates are not voted upon simultaneously, whether voting is open or secret,
the manner in which ties are to be broken).

2. “Conditional” paradoxes: These are paradoxes where changing one relevant
datum while holding constant all other relevant data leads to a “surprising” and
arguably undesirable outcome.

An array of paradoxes of one or both types are described and analyzed by
McGarvey (1953), Riker (1958), Smith (1973), Fishburn (1974, 1977, 1981, 1982),
Young (1974), Niemi and Riker (1976), Doron and Kronick (1977), Doron (1979),



'l
|
'
|
|
|
!
|

3 Review of Paradoxes Afflicting Procedures for Electing a Single Candidate 21

Richelson (1979), Gehrlein (1983), Fishburn and Brams (1983), Saari (1984, 1987,
1989, 1994, 2000, 2008), Niou (1987), Moulin (1988a), Merlin and Saari (1997),
Brams, Kilgour and Zwicker (1998), Scarsini (1998), Nurmi (1998a, 1998b, 1999,
2004, 2007), Lepelley and Merlin (2001), Merlin et al. (2002), Merlin and Valognes
(2004), Tideman (1987, 2006), Gehrlein and Lepelley (2011), among others.

3.2.1 Simple Paradoxes

The six best-known “simple” paradoxes that may afflict voting procedures designed
to elect one out of two or more candidates are the following:

3.2.1.1 The Condorcet (or Voting, or Cyclical Majorities) Paradox
(Condorcet 1785; Black 1958)

Given that the preference ordering of every voter among the competing candidates
is transitive, the (amalgamated) preference ordering of the majority of voters among
the competing candidates may nevertheless be intransitive. A necessary condition
for this to occur is that the various majorities are composed of different persons and
there exist at Jeast three candidates. Although we do not demonstrate this paradox
in the Appendix, it may occur under all ranked voting procedures, as well as under
the successive elimination procedure.

3.2.1.2 The Condorcet Winner Paradox (Condorcet 1785; Black 1958)

A candidate x is not elected despite the fact that it constitutes a “Condorcet Winner”,
i.e., despite the fact that x is preferred by a majority of the voters over each of the
other competing alternatives.”

3.2.1.3 The Absolute Majority Paradox

This is a special case of the Condorcet winner paradox. A candidate x may not
be elected despite the fact that it is the only candidate ranked first by an absolute
majority of the voters.

2Fishburn (1974, p. 544) constructs an example with 101 voters and nine candidates two of whom
are candidates @ and w, such that w beats each of the other eight candidates by a (slim) majority
of 51 to 50 (and hence is a Condorcet winner), whereas a beats each of the other seven candidates
by a considerably larger majority. Fishburn states that “examples like this suggest that some cases
which have a simple-majority [Condorcet] winner do not represent the most satisfactory social
choice.” We disagree with this statement and hold that a Condorcet winner, if one exists, ought
always (o be elected.




22 D.S. Felsenthal

3.2.1.4 The Condorcet Loser or Borda Paradox (Borda 1784; Black 1958)

A candidate x is elected despite the fact that it constitutes a “Condorcet Loser” i.c.,
despite the fact that a majority of volers prefer each of the remaining candidates to x.
This paradox is a special case of the violation of Smith’s (1973) Condorcet principle.
According to this principle, if it is possible to partition the set of candidates into two
disjoint subsets, A and B, such that each candidate in A is preferred by a majority
of the voters over each candidate in B, then no candidate in B ought to be elected
unless all candidates in A are elected.

3.2.1.5 The Absolute Loser Paradox

This is a special case of the Condorcet loser paradox. A candidate x may be elected
despite the fact that it is ranked last by a majority of voters.

3.2.1.6 The Pareto (or Dominated Candidate) Paradox (Fishburn 1974)

A candidate x may be elected while candidate y may not be elected despite the fact
that all voters prefer candidate y to x.

3.2.2 Conditional Paradoxes

The nine best-known “conditional” paradoxes that may afflict voting procedures for
elecling a single candidate are the following: '

3.2.2.1 Additional Support (or Lack of Monotonicity or Negative
Responsiveness) Paradox (Smith 1973; Fishburn 1974a, Fishburn
and Brams 1983)

If candidate x is elected under a given distribution of voters’ preferences among the
competing candidates, it is possible that, ceteris paribus, x may not be elected if
some voler(s) increase(s) his (their) support for x by moving x to a higher position
in his (their) preference ordering. Alternatively, if candidate x is not elected under
a given distribution of voters’ preferences among the competing candidates, it is
possible that, ceteris paribus, x will be elected if some voter(s) decrease(s) his
(their) support for x by moving x to a lower position in his (their) preference
ordering.3

3 Another version of the nost-monolonicity paradox (which is not demonstrated in the Appendix)
is a situation where x is elected in a given electorate but may not be elected if, ceteris paribus,
additional voters join the electorate who rank x at the top of their preference ordering, or,
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3.2.2.2 Reinforcement (or Inconsistency or Multiple Districts) Paradox
(Young 1974) -

If x is elected in each of several disjoint electorates, it is possible that, ceteris
paribus, x will not be elected if all electorates are combined into a single electorate.

3.2.2.3 Truncation Paradox (Brams 1982; Fishburn and Brams 1983)

A voter may obtain a more preferable outcome if, ceteris paribus, he lists in his
ballot only part of his (sincere) preference ordering among some of the competing
candidates than listing his entire preference ordering among all the competing
candidates.

3.2.2.4 No-Show paradox (Fishburn and Brams 1983; Ray 1986; Moulin
1988b; Holzman 1988/89; Pérez 1995)

This is an extreme version of the truncation paradox. A voler may obtain a more
preferable outcome if he decides not to participate in an election than, ceteris
paribus, if he decides to participate in the election and vote sincerely for his top
preference(s).

3.2.2.5 Twin Paradox (Moulin 1988b)

This is a special version of the no-show paradox. Two voters having the same
preference ordering may obtain a preferable outcome if, ceteris paribus, one of them
decides not to participate in the election while the other votes sincerely.

3.2.2.6 Violation of the Subset Choice Condition (SCC) (Fishburn 1974b,c,
1977)

SCC requires that when there are at least three candidates and candidate x is the
unique winner, then x must not become a loser whenever any of the original losers
is removed and all other things remain the same. All the voting procedures discussed
in this paper except the range voting (RV) and majority judgment (MJ) procedures
violate SCC.* In the context of individual choice theory SCC is known as Chernoff’s

alternatively, a situation where xis not elected in a given electorate but may be elected if, cereris
paribus, additional voters join the electorate who rank x at the bottom of their preference ordering.
4The RV and M) procedures satisfy SCC because these procedures do not aggregate the individual
voters’ preference orderings into a social preference ordering in order to determine the winner.
Under these procedures every candidate is ranked (on a cardinal or ordinal scale) by every voter,
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condition (1954, p. 429, postulate 4) which states that if an alternative x chosen from
aset T is an element of a subset § of 7', then x must be chosen also from S.

3.2.2.7 Preference Inversion Paradox

If the individual preferences of each voter are inverted it is possible that, ceteris
paribus, the (unique) original winner will still win.

3.2.2.8 Lack of Path Independence Paradox (Farquharson 1969; Plott 1973)

If the voting on the competing candidates is conducted sequentially rather than
simultaneously, it is possible that candidate x will be elected under a particular
sequence but not, cereris paribus, under an alternative sequence.

3.2.2.9 Strategic Voting Paradox (Gibbard 1973; Satterthwaite 1975)

There are conditions under which a voter with full knowledge of how the other
voters are to vote and the decision rule being used, would have an incentive to
vote in a manner that does not reflect his true preferences among the competing
alternatives. All known non-dictatorial voting procedures suffer from this paradox;
it is not demonstrated in the Appendix.

3.3 Voting Procedures for Electing One out of Two
or More Candidates

3.3.1 Non-ranked Voting Procedures

There are four main voting procedures for electing a single candidate where voters
do not have to rank-order the candidates:

and the winner is that candidate whose average (or median) rank is highest. Thus the elimination
of any losing candidate cannot affect, ceteris paribus, the identity of the original winner.

It may perhaps be assumed that under Approval Voting a voter will never vote for an alternative
in a subsel which s/he did not “approve” in the superset, and hence that Approval Voting, too,
satisfies SCC. This assumption is debatable. It can easily be shown — as in Example 3.5.1.1. below -
that when there are three alternatives among whom a voter has a linear preference ordering, it
would always be rational for a voter under Approval Voting lo vote for his/her second preference
if his/her top preference is no longer available — even if originally s/he “approved” only of his/her
top preference. By doing so s/he has nothing to lose but may obtain a better outcome than by
abstaining — regardless of how all other voters are going to vote. Hence in our view Approval
Voting may violate SCC.
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3.3.1.1 Plurality (or First Past the Post, Briefly FPTP) Voting Procedure

This is the most common procedure for electing a single candidate, and is used,
inter alia, for electing the members of the House of Commons in the UK and the
members of the House of Representatives in the US. Under this procedure every
voler casts one vote for a single candidate and the candidate obtaining the largest
number of votes is elected.

3.3.1.2 Plurality with Runoff Voting Procedure

Under the usual version of this procedure up to two voting rounds are conducted.
In the first round each voter casts one vote for a single candidate. In order to win
in the first round a candidate must obtain either a special plurality (usually at least
40% of the votes) or an absolute majority of the votes. If no candidate is declared the
winner in the first round then a second round is conducted. In this round only the two
candidates who obtained the highest number of votes in the first round participate,
and the one who obtains the majority of votes wins. This too is a very common
procedure for electing a single candidate and is used, inter alia, for electing the
President of France.

3.3.1.3 Approval Voting (Brams and Fishburn 1978, 1983)

Under this procedure every voter has a number of votes which is equal to the number
of competing candidates, and every voter can cast one vote or no vote for every
candidate. The candidate obtaining the largest number of votes is elected. So far this
procedure has not been used in any public elections but is already used by several
professional associations and universities in electing their officers.

3.3.1.4 Successive Elimination (Farquharson 1969)

This procedure is common in parliaments when voting on alternative versions of
bills. According to this procedure voting is conducted in a series of rounds. In each
round two alternatives compete; the one obtaining fewer votes is eliminated and the
other competes in the next round against one of the alternatives which has not yet
been eliminated. The alternative winning in the last round is the ultimate winner.

3.3.2 Ranked Voting Procedures That Are Not
Condorcet-Consistent

Six ranked procedures under which every voter must rank-order all competing
candidates — but which do not ensure the election of a Condorcet winner when one
exists — have been proposed, as far as I know, during the last 250 years. These
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procedures are described below. Only one of these procedures (alternative vote) is
used currently in public elections.

3.3.2.1 Borda’s Count (Borda 1784; Black 1958)

This voting procedure was proposed by Jean Charles de Borda in a paper he deliv-
ered in 1770 before the French Royal Academy of Sciences entitled ‘Memorandum
on election by ballot’ (‘Mémoire sur les élections au scrutin’). According to Borda's
procedure each candidate, x, is given a score equal to the number of pairs (V, y)
where V is a voter and y is a candidate such that V prefers x to y, and the candidate
with the largest score is elected. Equivalently, each candidate x gets no points for
each voter who ranks x last in his preference ordering, one point for each voter
who ranks x second-to-last in his preference order, and so on, and m — 1 points
for each voter who ranks x first in his preference order (where m is the number
of candidates). Thus if all n voters have linear preference orderings among the
m candidates then the total number of points obtained by all candidates is equal
to the number of voters multiplied by the number of paired comparisons, i.e., to
nm{m — 1)/2.

3.3.2.2 Alternative Vote (AV); (aka Instant Runoff Voting)

This is the version of the single transferable vote (STV) procedure (independently
proposed by Carl George Andrae in Denmark in 1855 and by Thomas Hare in
England in 1857) for electing a single candidate. It works as follows. In the first
step one verifies whether there exists a candidate who is ranked first by an absolute
majority of the voters. If such a candidate exists s/he is declared the winner. If no
such candidate exists then, in the second step, the candidate who is ranked first by
the smallest number of voters is deleted from all ballots and thereafter one again
verifies whether there is now a candidate who is ranked first by an absolute majority
of the voters. The elimination process continues in this way until a candidate who
is ranked first by an absolute majority of the voters is found. The Alternative Vote
procedure is used in electing the president of the Republic of Ireland, the Australian
House of Representatives, as well as the mayors in some municipal elections in
the US.

3.3.2.3 Coombs’ Method (Coombs 1964, pp. 397-399; Straffin 1980; Coombs
et al. 1984)

This procedure was proposed by the psychologist Clyde H. Coombs in 1964. 1t
is similar to Allernative Vote except that the elimination in a given round under
Coombs’ method involves the candidate who is ranked last by the largest number of
voters (instead of the candidate who is ranked first by the smallest number of voters
under alternative vote).
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3.3.2.4 Bucklin’s Method (Hoag and Hallett 1926, pp. 485-491;
Tideman 2006, p. 203)

This voting system can be used for single-member and multi-member districts. It is
named after James W. Bucklin of Grand Junction, Colorado, who first promoted
it in 1909. In 1913 the US Congress prescribed (in the Federal Reserve Act of
1913, Sect. 4) that this method be used for electing district directors of each Federal
Reserve Bank.

Under Bucklin’s method voters rank-order the competing candidates. The vote
count staris like in the Aliernative Vote method. If there exists a candidate who is
ranked first by an absolute majority of the voters s/he is elected. Otherwise the
number of voters who ranked every candidate in second place are added to the
number of voters who ranked him/her first, and if now there exists a candidate
supported by a majority of voters s/e is elected. If not, the counting process
continues in this way by adding for each candidate his/her third, fourth, . . . rankings,
until a candidate is found who is supported by an absolute majority of the voters.
If two or more candidates are found to be supported by a majority of voters in the
same counting round then the one supported by the largest majority is elected.’

3.3.2.5 Range Voting (Smith 2000)

According to this procedure the suitability (or level of performance) of every
candidate is assessed by every voter and is assigned a (cardinal) grade (chosen from
a pre-specified range) reflecting the candidate’s suitability or level of performance
in the eyes of the voter. The candidate with the highest average grade is the winner.
This procedure is currently championed by Warren D. Smith (see http://rangevoting.
org) and used to elect the winner in various sport competitions.

SHowever, it is unclear how a tie between two candidates, say a and &, ought to be broken under
Bucklin's procedure when both ¢ and b are supported in the same counting round by the same
number of voters and this number constitutes a majority of the voters. If one tries to break the tie
between a and b in such an eventuality by performing the next counting round in which all other
candidates are also allowed to participate, tﬂe&n it is possible that the number of (cumulated) votes
of another candidate, ¢, will exceed that of a and b.

To see this, consider the following simple example. Suppose there are 18 voters who must elect
one candidate under Bucklin’s procedure and whose preference orderings among four candidates,
a, b, ¢, d are as follows: seven voters with preference ordering a > b > ¢ > d, eight voters
with preference ordering b > a > ¢ > d, one voter with preference ordering d > ¢ > a > b,
and two voters with preference ordering d > ¢ > b > a. None of the candidates constitutes
the top preference of a majority of the voters. However, both ¢ and & constitute the top or second
preference by a majority of voters (15). If one tries to break the tie between a and b by performing
the next (third) counting round in which ¢ and d are also allowed to participate, then ¢ will be
elected (with 18 votes), but if only @ and b are allowed to participate in this counting round then &
will be elected (with 17 votes).

So which candidate ought to be elected in this example under Bucklin’s procedure? As far as 1
know, Bucklin did not supply an answer to this question.
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3.3.2.6 Majority Judgment (Balinski and Laraki 2007a,b, 2011)

According to this proposed procedure, the suitability (or level of performance)
of every candidate is assessed by every voter and is assigned an ordinal grade
(chosen from a pre-specified range) reflecting the candidate’s suitability or level of
performance in the eyes of the voter. The candidate with the highest median grade
is the winner.

3.3.3 Ranked Voting Procedures that are Condorcet-consistent®

All the eight voting procedures described in this subsection require that voters rank-
order all competing candidates. Under all these procedures a Condorcet winner,
if one exists, is elected. The procedures differ from one another regarding which
candidate gets elected when the social preference ordering contains a top cycle, i.e.,
when a Condorcet winner does not exist.

3.3.3.1 The Minimax Procedure

Condorcet specified that the Condorcet winner (whom he called ‘the majority
candidate’) ought to be elected if one exists. However, according to Black (1958,
pp. 174-175, 187) Condorcet did not specify clearly which candidate ought to
be elected when the social preference ordering contains a top cycle. Black (1958,
p. 175) suggests that “It would be most in accordance with the spirit of Condorcet’s
... analysis ... to discard all candidates except those with the minimum number
of majorities against them and then to deem the largest size of minority to be a
majority, and so on, until one candidate had only actual or deemed majorities against
each of the others.” In other words, the procedure attributed by Black to Condorcet
when cycles exist in the social preference ordering is a minimax procedure’ since
it chooses that candidate whose worst loss in the paired comparisons is the least
bad. This procedure is also known in the literature as the Simpson—Kramer rule (see
Simpson 1969; Kramer 1977).

6 1 list here only deterministic procedures. For a Condomeet-consistent probabilistic procedure see
Felsenthal and Machover (1992), 1 also do not list here two Condorcet-consistent deterministic
procedures proposed by Tideman (1987) and by Schulize (2003) because ! do not consider
satisfying (or violating) the independence-of-clones property, which is the main reason why these
two procedures were proposed, to be associated with any voting paradox. (A phenomenon where
candidate x is more likely to be elected when two clone candidates, y and y’, exist, and where x
is less likely to be elected when, ceteris paribus, one of the clone candidates withdraws, does not
seem (o me surprising or counter-intuitive).

"Young (1977, p. 349) prefers to call this procedure “The minimax function™.
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3.3.3.2 Dodgson’s procedure (Black 1958, pp. 222-234; McLean and Urken,
1995, pp. 288-297)

This procedure is named after the Rev. Charles Lutwidge Dodgson, aka Lewis
Carroll, who proposed it in 1876. It elects the Condorcet winner when one exists. If
no Condorcet winner exists it elects that candidate who requires the fewest number
of switches (i.e. inversions of two adjacent candidates) in the voters’ preference
orderings in order to make him the Condorcet winner.

3.3.3.3 Nanson’s Method (Nanson 1883; McLean and Urken, 1995, ch. 14)

Nanson’s method is a recursive elimination of Borda’s method. In the first step one
calculates for each candidate his Borda score. In the second step the candidates
whose Borda score do not exceed the average Borda score of the candidates in the
first step are eliminated from all ballots and a revised Borda score is computed for
the uneliminated candidates. The elimination process is continued in this way until
one candidate is left. If a (strong) Condorcet winner exists then Nanson’s method
elects him.®

3.3.3.4 Copeland’s Method (Copeland 1951)

Every candidate x gets one point for every paired comparison with another
candidate y in which an absolute majority of the voters prefer x to y, and half a
point for every paired comparison in which the number of voters preferring x to y is
equal to the number of voters preferring y 10 x. The candidate obtaining the largest
sum of points is the winner.

3.3.3.5 Black’s Method (Black 1958, p. 66)

According to this method one first performs all paired comparisons to verify whether
a Condorcet winner exists. If such a winner exists then sthe is elected. Otherwise
the winner according to Borda’s count (see above) is elected.

8Although Nanson’s procedure satisfies the strong Condorcet condition, i.e., it always elects a
candidate who beats every other candidate in paired comparisons, this procedure may not satisfy
the weak Condorcet condition which requires that if there exist(s) candidate(s) who is (are)
unbeaten by any other candidate then this (these) candidate(s) — and only this (these) candidate(s) -
ought to be elected. For an example of violation of the weak Condorcet condition by Nanson’s
procedure see Niou (1987).
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3.3.3.6 Kemeny’s Method (Kemeny 1959; Kemeny and Snell 1960;
Young and Levenglick 1978; Young 1995)

Kemeny’s method (aka Kemeny—Young rule) specifies that up to m! possible social
preference orderings should be examined (where m is the number of candidates) in
order to determine which of these is the “most likely” true social preference order-
ing.? The selected “most likely” social preference ordering according to this method
is the one where the number of pairs (4, y), where A is a voter and y is a candidate
such that 4 prefers x to y, and y is ranked below x in the social preference ordering
is maximized. Given the voters’ various preference orderings, Kemeny’s procedure
can also be viewed as finding the most likely (or the best predictor, or the best
compromise) true social preference ordering, called the median preference ordering,
i.e., that social preference ordering S that minimizes the sum, over all voters i, of the
numbser of pairs of candidates that are ordered oppositely by S and by the i th voter.'®

3.3.3.7 Schwartz’s Method (Schwartz 1972; 1986)

Thomas Schwartz’s method is based on the notion that a candidate x deserves to be
listed ahead of another candidate y in the social preference ordering if and only if x
beats or ties with some candidate that beats y, and x beats or ties with all candidates
that y beats or ties with. The Schwartz set {(from which the winner should be chosen)
is the smallest set of candidates who are unbeatable by candidates outside the set.
The Schwartz set is also called GOCHA (Generalized Optimal Choice Axiom).

3.3.3.8 Young’s Method (Young 1977)

According to Fishburn’s (1977, p. 473) informal description of Young’s procedure
“[it] is like Dodgson’s in the sense that it is based on altered profiles that have
candidates who lose to no other candidate under simple majority. But unlike

STideman (2006, pp. 187-189) proposes two heuristic procedures that simplify the need to examine
all m! preference orderings.

19 According to Kemeny (1959) the distance between two preference orderings, R and R’, is the
number of pairs of candidates (alternatives) on which they differ. For example, if R = a > b >
c>dad R =d » a > b > c, then the distance between R and R’ is 3, because they
agree on three pairs [(a > b), (@ > c), (b > c)] but differ on the remaining three pairs, i.e.,
on the preference ordering between a and 4, b and d, and between ¢ and d. Similarly, if R" is
¢ > d > a > b then the distance between R and R" is 4 and the distance between R’ and R” is 3.
According to Kemeny’s procedure the most likely social preference ordering is that R such that the
sum of distances of the voters’ preference orderings from R is minimized. Because this R has the
properties of the median central measure in statistics it is called the median preference ordering.
The median preference ordering (but not the mean preference ordering which is that R which
minimizes the sum of the squared differences between R and the voters' preference orderings) will
be identical to the possible social preference ordering W which maximizes the sum of voters that
agree with all paired comparisons implied by W.
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Dodgson, Young deletes voters rather than inverting preferences to obtain the
altered profiles. His procedure suggests that we remain most faithful 1o Condorcet’s
principle if the choice set consists of aliernatives that can become simple majority
nonlosers with removal of the fewest number of voters.”

3.4 Summary

As can be seen from Tables 3.1-3.3, seven procedures (Alternative Vote, Coombs,
Bucklin, Majority Judgment, Minimax, Dodgson, and Young) are susceptible to
the largest number of paradoxes (10), whereas the plurality (first-past-the-post) and
Borda’s procedures are susceptible to the smallest number of paradoxes (6).

Of the nine Condorcet-consistent procedures, six procedures (successive elim-
ination, minimax, Dodgson’s, Nanson's, Schwartz’s, and Young’s) are dominated
by the other three procedures (Black’s, Copeland’s and Kemeny’s) in terms of the
paradoxes to which these procedures are susceptible.

However, the number of paradoxes to which each of the various voting pro-
cedures surveyed here is vulnerable may be regarded as meaningless or even
misleading. This is so for two reasons.

Table 3.1 Susceptibility of non-ranked procedures to voting paradoxes

Procedure Plurality Plurality w Approval Successive
runoff voting climination

Paradox
Condorcet pdx (cyclical majorities)
Condorcet winner pdx
Absolute majority pdx
Condorcet loser pdx
Absolute loser pdx
Pareto dominated candidate
Lack of monotonicity
Reinforcement
No-show
Twin
Truncation
Subset choice condition (SCC)
Preference inversion
Path independence
Strategic voting
Total @ signs
Total + & & signs

Notes:

A + sign indicates that a procedure is vulnerable to the specified paradox

A @ sign indicates that a procedure is vulnerable to the specified paradox which seems to us an
especially intolerable paradox

A — sign indicates that a procedure is not vulnerable to the specified paradox

It is assumed that all voters have linear preference ordering among all competing candidates
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Table 3.2 Susceptibility of ranked non Condorcet-consistent procedures to voting paradoxes

Procedure Borda Alternative Coombs Bucklin Range Majority
Vote (AV) Voting Judgment
STV
Paradox
Condorcet pdx (cyclical majorities) - + + + + 4-
Condortcet winner pdx + + + + + +
Absolute majority pdx b - = = 2] &
Condorcet loser pdx - - = ©& 3% @
Absolute loser pdx - - - - @ @
Pareto dominated candidate = = = = = =
Lack of monotonicity = & & - - -
Reinforcement = + + + = +
No-show = + + + - +
Twin = + -+ et - +
Truncation + + + + -+ +
Subsel choice condition (SCC) + + + + = -
Preference inversion = + + + - -
Path independence - = = - - -
Strategic voting + + -+ + + +
Total @ signs | 1 i 1 3 3
Total + and @ signs 6 10 10 10 7 10

Notes:

A - sign indicates that a procedure is vulnerable to the specified paradox

A @ sign indicates that a procedure is vulnerable to the specified paradox which seems to us an
especially intolerable paradox

A — sign indicates that a procedure is not vulnerable to the specified paradox

It is assumed that all voters have linear preference ordering among all competing candidates

First, some paradoxes are but special cases of other paradoxes or may induce the
occurrence of other paradoxes, as follows:

» A procedure which is vulnerable to the absolute majority paradox is also
vulnerable 1o the Condorcet winner paradox;

» A procedure which is vulnerable to the absolute loser paradox is also vulnerable
to the Condorcelt loser paradox;

» Except for the range voting and majority judgment procedures, all procedures
surveyed in this chapter that are vulnerable to the Condorcet loser paradox are
also vulnerable to the preference inversion paradox.

» The five procedures surveyed in this chapter which may display lack of mono-
tonicity are also susceptible to the No-Show paradox'!;

' Campbell and Kelly (2002) devised a non-monotonic voting rule that does not exhibit the No-
Show paradox. However, as this method violates the anonymity and neutrality conditions and hence
has not been considered seriously for actual use, we ignore it.
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Table 3.3 Susceptibility of ranked Condorcet-consistent procedures to voting paradoxes

Procedure Minimax Dodgson Black Copeland Kemeny Nanson Schwariz Young

Paradox

Condorcet pdx (cyclical <4 - + + + + + +
majorities)

Condorcet winner pdx
Absolute majority pdx
Condorcet loser pdx
Absolute loser pdx
Pareto dominated cand.
Lack of monotonicity
Reinforcement
No-show
Twin
Truncation
SCC
Preference inversion
Path independence
Stralegic voting
Total @ signs
Total + & @ signs

Notes:

A + sign indicates that a procedure is vulnerable to the specified paradox

A @ sign indicates that a procedure is vulnerable to the specified paradox which seems to us an
especially intolerable paradox

A — sign indicates that a procedure is not vulnerable to the specified paradox

It is assumed that all voters have linear preference ordering among all competing candidates

!
|
I
I
|
|

@D
I
|
I
I
|

|l @ |
|
I
|
[
I
ool

I
|
'

)t
+i++++++01
L+ ++++ |
L+ 4+ ++ |
| +++++ |
I +++++@ |

l+++++ 1 @ |
ol

— b
o
— b
=
L o )
(=]

» All Condorcet-consistent procedures are susceptible to the no-show paradox and
hence also to the twin paradox when there exist at least four candidates.'?

Second, and more importantly, not all the surveyed paradoxes are equally undesir-
able. Although assessing the severity of the various paradoxes is largely a subjective
maller, there seems to be a wide consensus that a voting procedure which is
susceptible to an especially serious paradox (denoted by & in Tables 3.1-3.3),
i.e., a voting procedure which may elect a pareto-dominated candidate, or elect
a Condorcet (and absolute) loser, or display lack of monotonicity, or not elect an
absolute winner, should be disqualified as a reasonable voting procedure regardless
of the probability that these paradoxes may occur. On the other hand, the degree
of severity that should be assigned to the remaining paradoxes should depend, inter
alia, on the likelihood of their occurrence under the procedures that are vulnerable

12 Although all Condorcet-consistent procedures are also susceptible to the Reinforcement paradox,
there is no logical connection between this paradox and the no-show paradox. As mentioned by
Moulin (1988b, pp. 54-55), when there are no more than three candidates there exist Condorcet-
consistent procedures which are immune 1o both the no-show and twin paradoxes, e.g., the
minimax procedure which elects the candidate to whom the smallest majority objects.
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to them. Thus, for example, a procedure which may display a given paradox only
when the social preference ordering is cyclical — as is the case for most of the
paradoxes afflicting the Condorcet-consistent procedures — should be deemed more
desirable (and the paradoxes it may display more tolerable) than a procedure which
can display the same paradox when a Condorcet winner exists. 3

Additional criteria which should be used in assessing the relative desirability of
a voting procedure are what may be called administrative-technical criteria. The
main criteria belonging to this category are the following:

— Requirements from the voter: some voling procedures make it more difficult
for the voter to participate in an election by requiring him/her to rank-order
all competing candidates, whereas other procedures make it easier for the voter
by requiring him/her to vote for just one candidate or for any candidate(s) sthe
approves.

— Ease of understanding how the winner is selected: In order to encourage voters (o
participate in an election a voting procedure must be transparent, i.e., voters must
understand how their votes (preferences) are aggregated into a social choice.
Thus a voting procedure where the winner is the candidate who received the
plurality of voles is easier to explain — and considered more transparent — than
a procedure which may involve considerable mathematical calculations (e.g.,
Kemeny’s) in order to determine the winner.

— Ease of executing the elections: Election procedures requiring only one voting
(or counting) round are more easily executed than election procedures that may
require more than one voting (or counting) round. Similarly, election procedures
requiring to count only the number of votes received by each candidate are easier
to conduct than those requiring the conduct of all m(m — 1)/2 paired contests
between all m candidates, or those requiring the examination of up tom! possible
social preference orderings in order to determine the winner.

— Minimization of the temptation to vote insincerely: Although all voting proce-
dures are vulnerable to manipulation, i.e., to the phenomenon where some voters
may benefit if they vote insincerely, some voting procedures (e.g., Borda’s count,
Range voting) are susceptible to this considerably more than others.

- Discriminability: One should prefer a voting procedure which is more discrim-
inate, i.e., it is more likely to select (deterministically) a unique winner than
produce a set of tied candidates — in which case the employment of additional
means are needed to obtain a unique winner. Thus, for example, when the social
preference ordering is cyclical then, ceteris paribus, Schwartz’s and Copeland’s
methods are considerably less discriminating than the remaining Condorcet-
consistent procedures surveyed in this chapter.

I3However, in order to be able to state conclusively which of several voting procedures that are
susceptible to the same paradox is more likely to display this paradox, one must know what are
the necessary and/or sufficient conditions for this paradox to occur under the various compared
procedures. Such knowledge is still lacking with respect (o most voting procedures and paradoxes.
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Of course there may exist conflicts between some of these technical-administrative
criteria. For example, a procedure like Kemeny’s which, on the one hand, is more
difficult to execute in practice and to explain to prospective voters (and hence less
transparent), is, on the other hand, more discriminate and less vulnerable to insincere
behavior.

So in view of all the above criteria, which of the 18 surveyed voting procedures
do 1 think should be preferred? Since the weakest extension of the majority
rule principle when there are more than two candidaltes is the Condorcet winner
principle, I think that the electoral system which ought to be used for electing one
out of m > 2 candidates should be Condorcet-consistent.

But as one does not know before an election is conducted whether a Condorcet
winner will exist or whether the social preference ordering will contain a top cycle,
which of the nine Condorcet-consistent procedures surveyed and exemplified in
this paper should be preferred in case a top cycle exists? In this case I think that
the Successive Elimination procedure and Schwartz’s procedure should be readily
disqualified because of their vulnerability to electing a pareto-dominated candidate,
Dodgson’s and Nanson’s procedures should be readily disqualified because of
their lack of monotonicity, and the minimax and Young’s procedures should be
readily disqualified because of their vulnerability to electing an absolute or a
Condorcet loser. Although Black’s procedure cannot elect a Condorcet loser, it may
nevertheless come quite close to it because, as demonstrated in Example 3.5.13.3
below, it violates Smith’s (1973) Condorcet principle, so this procedure too seems
to me not considerably more desirable than the minimax and Young’s procedures.

This leaves us with a choice between the remaining two Condorcet-consistent
procedures — Copeland’s and Kemeny’s. The choice between them depends on
the importance one assigns to the above-mentioned technical-administrative cri-
teria. Both these procedures require voters to rank-order all candidates. However,
Copeland’s method is probably easier than Kemeny’s to explain to lay voters,
as well as, when the number of candidates is large, may involve considerably
fewer calculations in determining who is (are) the ultimate winner(s). Kemeny’s
procedure, on the other hand, is more discriminate than Copeland’s when the
number of candidates is relatively small, and is probably also — because of its
increased complexity in determining the ultimate winner — less vulnerable to
insincere voting. So if I would have to choose between these two procedures I would
choose Kemeny’s because most elections where a single candidate must be elected
usually involve relatively few contestants — in which case Kemeny's procedure
seems to have an advantage over Copeland’s procedure. Moreover, as I mentioned in
the description of Kemeny’s procedure and as argued by Young (1995, pp. 60-62),
Kemeny’s procedure has also the advantage that it can be justified not only from
Condorcet’s perspective of the maximum likelihood rule, but also as choosing for
the entire society the “median preference ordering” — which can be viewed from
the perspective of modern statistics as the best compromise between the various
rankings reported by the voters.



36 D.S. Felsenthal

3.5 Appendix: exemplifying the Various Paradoxes That Afflict
the Various Procedures

3.5.1 Demonstrating Paradoxes Afflicting the Plurality Procedure

Except for being vulnerable to strategic voting, the plurality procedure is vulnerable
to the Condorcet winner paradox, the Condorcet loser paradox, the absolute loser
paradox, the preference inversion paradox, and to SCC. The following example
demonstrates the vulnerability of the plurality procedure to all these paradoxes
simultaneously.

3.5.1.1 Example

Suppose there are nine voters who must elect one out of three candidates, a, b, and
¢, and whose preference orderings among these candidates are as follows:

No. of voters  Preference ordering

4 a-b>c
3 b>=c»a
2 c>=hb>a

Here b is the Condorcet winner and a is not only a Condorcet loser but also an
absolute loser. Nevertheless, if all voters vote for their top preference then a will
be elected. Note that if ¢ drops out of the race then b will be elected — thus
demonstrating violation of SCC. Note also that if all voters invert their preference
orderings then @ becomes an absolute winner and hence will be elected — thus
demonstrating the Preference Inversion paradox.

3.5.2 Demonstrating Paradoxes Afflicting the Plurality
with Runoff Procedure

Except for being vulnerable to strategic voting, the plurality with runoff procedure is
vulnerable to the Condorcet winner, lack of monotonicity, reinforcement, no-show,
twin, preference inversion, and to the SCC paradoxes.

Example 3.5.2.1 below demonstrates the vulnerability of the plurality with runoff
procedure to the Condorcet winner, to lack of monotonicity, and to the SCC
paradoxes.

3.5.2.1 Example

Suppose there are 43 voters whose preference orderings among three candidates,
a, b, and ¢, are as follows:
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No. of voters  Preference ordering

7 a>-b>c
9 a>c>b
14 b>c>ua
13 c>a>b

Here the social preference ordering is ¢ > a > b, i.e., ¢ is the Condorcet winner. But
if all voters vote sincerely then under the plurality with runoff procedure ¢ will be
eliminated in the first round and « will beat & in the second round and thus become
the ultimate winner. (Note that if ¢ would have withdrawn from the race prior to
the first round then, ceteris paribus, a would have been elected already in the first
round, thereby demonstrating this procedure’s vulnerability to SCC).

Now suppose that, ceteris paribus, five of the 14 voters whose preference
ordering is b > ¢ > a (who are not very happy with the prospect that ¢ may be
elected) change it to a > b > ¢ thereby increasing a’s support. As a result of this
change b (rather than c¢) will be eliminated in the first round, and ¢ (the Condorcet
winner) will beat a in the second round — thereby demonstrating the vulnerability of
the plurality with runoff procedure to non-monotonicity.

Example 3.5.2.2 demonstrates the vulnerability of the plurality with runoff
procedure to the reinforcement paradox.

3.5.2.2 Example

Suppose there are two districts, I and II. In district I there are 17 voters whose
preference orderings among three candidates, ¢, b, and ¢, are as follows:

No. of voters  Preference ordering

4 a>bs>c
1 b>as>c
5 b>c>ua
6 c>ax>b
1 c>b>ua

and in district 11 there are 15 voters whose preference orderings among the three
candidates are as follows:

No. of voters  Preference ordering

6 a=c>b
8 b>c»>a
1 cra>b

If all voters vote sincerely then no candidate is ranked first by an absolute majority
of the voters in district I. Consequently candidate a is deleted from the race after the
first round and candidate b beats candidate ¢ in this district in the second round.
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In district II candidate b, who is ranked first by the majority of voters, is elected
in the first round.

However if, ceteris paribus, the two districts are amalgamated into a single
district, we obtain the following distribution of preference orderings of the 32 voters:

No. of voters  Preference ordering

4 a>=b>c
6 a>c>b
1 b>ax>»c
13 b>c>ua
7 c>a>b
1 c>b>a

If all voters vote sincerely then no candidate is ranked first by an absolute majority
of the voters. Consequently ¢ is deleted after the first round and « beats b and is
elected in the second round — in violation of the reinforcement postulate.

Example 3.5.2.3 demonstrates the vulnerability of the plurality with runoff
procedure to the no-show and to the twin paradoxes.

3.5.2.3 Example

Suppose there are 11 voters whose preference orderings among three candidates,
a, b, and ¢, are as follows:

No. of voters  Preference ordering

4 a>bs>c¢
3 b>=c>ua
1 c>a>b
3 c>b>a

If al} voters vote sincerely then no candidate is ranked first by an absolute majority
of the voters. Consequently b is deleted after the first round and ¢ beats a in the
second round and is elected. Since the election of ¢ is the worst outcome for the
voters whose preference ordering is @ > b > c, suppose that, ceteris paribus,
two of them decide not to participate in the election (no-show). We thus obtain the
following distribution of preference orderings:

No. of voters  Preference ordering

2 a>hb>c
3 b>c>u
1 c>axb
3 c>b>a
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Here a (rather than b) is eliminated in the first round, and b beats ¢ in the second
round. Thus the @ > b > ¢ voters obtained, ceteris paribus, a better outcome when
two of them did not participate in the election than when all of them participated in
the election thereby demonstrating the no-show paradox.

This example demonstrates also the vulnerability of the plurality with runoff
procedure to the (weak form) of the twin paradox. Suppose that, ceteris paribus,
there are only two voters with preference ordering a > & > c¢. One would expect
these voters to welcome another “twin” voters having identical preference ordering
to theirs thereby presumably giving an increased weight to their common preference
ordering. Yet as we saw, the addition of these twins to the electorate results in the
election of ¢, their worst alternative — thereby demonstrating the twin paradox.

Example 3.5.2.4 demonstrates the vulnerability of the plurality with runoff
procedure to the preference inversion paradox.

3.5.2.4 Example

Suppose there are 11 voters whose preference orderings among three candidates,
a, b, and ¢, are as follows:

No. of voters  Preference ordering

5 a>bh»c
4 b>cs>a
2 c=a>bh

If all voters vote sincerely for their top preference in the first round, then ¢ will
be eliminated at the end of the first round and thereafter ¢ will beat b in the
second round. However, if all voters invert their preference orderings then b will
be eliminated at the end of the first round and a will beat ¢ in the second round -
thus demonstrating the Preference inversion paradox.

3.5.3 Demonstrating the Paradoxes Afflicting the Approval
Voting Procedure

Except for being vulnerable to strategic voting, the approval voting procedure is
vulnerable to the Condorcet winner paradox, the Condorcet loser paradox, the
absolute majority and absolute loser paradoxes, to the pareto-dominated paradox,
to the Preference Inversion paradox, and to SCC.

Example 3.5.3.1 demonstrates the vulnerability of the approval voting procedure
to the Condorcet winner paradox.
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3.5.3.1 Example

This example is due to Felsenthal and Maoz (1988, p. 123, Example 3.2). Suppose
there are 47 voters whose preference orderings among three candidates, a, b, and
¢, are as follows:

No. of voters  Preference ordering

18 (a)>b>c
6 (b>c)>a
8 (b>a)>c
2 (c>a)>h
13 (c)>=b>ua

The social preference ordering is b > a > ¢, Le, b is the Condorcet winner.
However, if all voters approve (and vote for) the candidates denoted between
parentheses then a would get the largest number of approval votes (28) and will
thus be elected.

Example 3.5.3.2 demonstrates the vulnerability of the approval voting procedure
to the pareto-dominated paradox.

3.5.3.2 Example

This example is due to Felsenthal and Maoz (1988, p. 123, Example 3.4). Suppose
there are three voters whose preference orderings among four candidates, a, b, ¢,
and d, are as follows:

No. of voters  Preference ordering

1 a>b>c>d
1 c>=a>=b»d
1 d>a>b>c¢

The social preference orderingis @ > b > ¢ > d, i.e., a is the Condorcet winner.
However, if each voter approves (and votes for) his top three preferences then a tie
would occur between the number of votes (3) obtained by candidates ¢ and b, and
if this tie were to be broken randomly then there is a 0.5 probability that & would be
elected. So if b were to be elected it would demonstrate not only that the Condorcet
winner (¢) was not elected but also that a pareto-dominated candidate can be elected
under the approval voting procedure. (Note that all volers prefer a to b).

Example 3.5.3.3 demonstrates the vulnerability of the approval voting procedure
to the absolute majority paradox.

3.5.3.3 Example

Suppose there are 100 voters whose preference orderings among three candidates,
a, b, and ¢, are as follows:
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No. of voters  Preference ordering

51 a-h>c
48 b>=c>a
1 c-b>a

The social preference ordering isa > b > c, i.e.,, a is the Condorcet winner who
is ranked first by an absolute majority of the voters. However, if only one candidate
must be elected and if each voter approves (and votes for) his top two preferences,
then b will be elected despite the fact that a is ranked first by an absolute majority
of the voters.

Example 3.5.3.4 demonstrates the vulnerability of the approval voting procedure
to the absolute loser and to the Condorcet loser paradoxes.

3.5.3.4 Example

Suppose there are 15 voters whose preference orderings among three candidates,
da, b, and ¢, are as follows:

No. of voters  Preference ordering

6 (@)y>=b>rc
4 hy>c>a
| (c>a)»>b
4 c}y>b>a

The social preference cordering is b > ¢ > a, i.e., ¢ is not only the Condorcet loser
but also the Absolute Loser because this candidate is ranked last by an absolute
majority of the voters. However, if only one candidate must be elected and if all
voters approve (and vote for) the candidate(s) denoted between parentheses then
will be elected.

This example can also be used to demonstrate the susceptibility of the Approval
Voting procedure to the preference inversion paradox. If in the above example all
voters invert their preference ordering and decide to vote, as before, either only for
their top preference or for their top two preferences, then we obtain the following
distribution of votes:

No. of voters  Preference ordering

6 (©)>b>ua
4 (@) >c>b
1 (b>a)>c
4 (@>b>c

Here a is not only the Condorcet winner but also the absolute winner and is elected -
thereby demonstrating the susceptibility of approval voting to the preference
inversion paradox.
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When all voters are assumed to approve of (and vote for) originally only
their top preference (as under the plurality procedure) — and subject to what we
said in footnote 4 above —~ Example 3.5.1.1 can be used to also demonstrate the
susceptibility of the Approval Voting procedure to SCC. Thus, for instance, it would
be worthwhile, ceteris paribus, for the two voters in Example 3.5.1.1 whose original
preference ordering is ¢ > b > a to vote for b if alternative ¢ were no longer
available even though they did not “approve” originally of b — because by voting for
b they lose nothing but may avert the election of a, their least preferable alternative,
which may be elected if they abstain.

3.5.4 Demonstrating the Paradoxes Afflicting the Successive
Elimination Procedure

Except for being vulnerable to cyclical majorities and to strategic voting, the
successive elimination procedure is vulnerable to pareto-dominated, reinforcement,
no-show, twin, truncation, SCC, and path independence paradoxes.

Example 3.5.4.1 demonstrates the vulnerability of the successive elimination
procedure to the election of a pareto-dominated candidate. A necessary condition
for this to happen is that the social preference ordering is cyclical and there are at
least four candidates (Fishburn, 1982, p. 131).

3.5.4.1 Example

Suppose there are 11 voters whose preference orderings among four candidates,
a, b, c,and d, are as follows:

No. of voters  Preference ordering

3 a>b>c>d
2 c>=a>b>d
1 c>d>ax>b
5 d>=a>b>c

Thus the social preference ordering is cyclical (b > ¢ > d > a > b). Suppose
further that all the voters always vote sincerely for their preferred candidate in each
round, and that the order in which the divisions are carried out is as follows:

In round 1: 4 againsta;
In round 2: the winner of round 1 against c;
In round 3: the winner of round 2 against b;

Given this order d beats a (6:5) in the first round, ¢ beats d (6:5) in the second
round, and b beats ¢ (8:3) in the third round and becomes the ultimate winner, Note,
however, that b is a Pareto-dominated candidate because all the voters prefer a to b.
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This example can also be used to demonstrate the vulnerability of the successive
elimination procedure to SCC.

If, ceteris paribus, d is deleted, then in the first round a will beat ¢ (8:3), and in
the second round a will beat b (11:0) and thus a will become the ultimate winner —
in violation of SCC.

Similarly, this example can also be used to demonstrate the vulnerability of the
successive elimination procedure to the no-show paradox.

if, ceteris paribus, two of the voters whose top preference is d decide not to
participate, then a becomes the Condorcet winner and hence will be elected under
the successive elimination procedure. Note that this outcome is preferred over the
election of b by the two d > a > b > c¢ voters who decided not to participate —
thus demonstrating the vulnerability of the successive elimination procedure to the
no-show paradox.

This example can also be used to demonstrate the vulnerability of the successive
elimination procedure to lack of path independence when the social preference
ordering is cyclical.

Given the above preference orderings of the 11 voters, if the order of the divisions
in each round were changed such that:

In round 1: ¢ against b
In round 2: the winner of round 1 against ¢
In round 3: the winner of round 2 against d

Then in the first round ¢ would beat b (11:0), in the second round ¢ would also beat
¢ (8:3), but in the third round d would beat ¢ (6:5) and become the ultimate winner.

Example 3.5.4.2 demonstrates the vulnerability of the successive elimination
procedure to the reinforcement paradox.

3.54.2 Example

Suppose there are two districts, I and II. In district I there are three voters whose
preference orderings among four candidates are as follows:

No. of voters  Preference ordering

1 da>=b>d>r¢
1 b>d>c>u
1 d>=c=a>b

and in district II there are four voters whose preference ordering among the four
candidates are as follows:

No. of Voters  Preference Ordering

3 c=b>d>a
| d>a>»b>»c¢
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If the order of divisions in each district is:

b vs.d intound 1
Winner of first round against « in round 2
Winner of second round against ¢ in round 3

Then in each district ¢ will be the ultimate winner.

However if, ceteris paribus, the two districts are amalgamated into a single
district of seven voters, then d becomes the Condorcet winner and will therefore
be elected under the successive elimination procedure — in violation of the rein-
forcement postulate.

Example 3.5.4.3 demonstrates the vulnerability of the successive elimination
procedure to the Twin paradox.

3.54.3 Example

This example is due to Moulin (1988b, p. 54). Suppose there are six voters whose
preference orderings among three candidates, a, b, and c, are as follows:

No. of voters  Preference ordering

2 a>b>c
2 b>c>a
1 c>a>b
1 c>b>a

Suppose further that the order in which the divisions are conducted is as follows:

¢ vs. b inround |
Winner of round 1 vs. ¢ in round 2

and that if there is a tie between two candidates in any of the divisions it is broken
lexicographically, i.e., in favor of the candidate who is denoted by the letter that is
closer to the beginning of the alphabet.

Accordingly, there is a tie between « and b in the first round which is broken in
favor of a, and in the second round c beats ¢ and becomes the ultimate winner.

In view of this result one could expect that, ceteris paribus, the singlec > b > a
voter should welcome if an additional “twin” voter would join the electorate thereby
providing more weight to their common preferences. However, an addition of a
second ¢ > b > a voter would result, ceteris paribus, in a net loss to the first
¢ > b > a voter because b would become the Condorcet winner and hence also the
ultimate winner under the successive elimination procedure — thus demonstrating
the twin paradox.

Example 3.5.4.4 demonstrates the vulnerability of the successive elimination
procedure to the Truncation paradox.
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3.5.4.4 Example

Suppose there are six voters with the following preference orderings:

No. of voters  Preference ordering

1 a-b>c>d
1 c>b>a>d
2 c>d>b>ua
2 d~a»>b>»c

Suppose further that the order in which the divisions are conducted is as follows:

First round: b vs. ¢
Second round; winner of first round vs. d
Third round: winner of second round vs. a

Additionally, suppose that if a tie occurs between two candidates it is broken in
favor of the one denoted by a letter closer to the beginning of the alphabet.

Accordingly, in the first round there is a tie between b and ¢ which is broken
in favor of b. In the second round d beats b, and in the third round d beats a and
hence becomes the ultimate winner. This is of course a very bad outcome for the
single voter whose preference ordering is ¢ > b > ¢ > d. So suppose that, ceteris
paribus, this voter would truncate his preferences between b, ¢, and d, and indicate
just his top preference, «, i.e., this voter will participate only in the third round in
which @ will compete against the winner from the second round. As a result of such
truncation ¢ would beat b in the first round, ¢ would beat also d in the second round,
but in the third round there would be a tie between ¢ and ¢ — which will be broken
in favor of @, a much better result for the ¢ > b > ¢ > d voter, thus demonstrating
the truncation paradox.

3.5.5 Demonstrating Paradoxes Afflicting Borda’s Procedure

Excepl for being vulnerable to cyclical majorities and to strategic voting, Borda’s
procedure is vulnerable to the Condorcet winner, absolute majority, truncation, and
SCC paradoxes. And as 1 shall show in Example 3.5.13.3, it also violates Smith’s
Condorcet principle.

Example 3.5.5.1 demonstrates simultaneously the vulnerability of Borda’s pro-
cedure to the absolute majority paradox (and thus also to the Condorcet winner
paradox).

3.5.5.1 Example

Suppose there are 100 voters who have to elect one out of three candidates, g, b, c,
under Borda's procedure, and whose preference orderings are as follows:
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No. of voters  Preference ordering

51 a>bsc
48 b>=c>a
1 c>b»a

The number of Borda points awarded to candidates g, b, and ¢, are 102, 148, and 50,
respectively, so candidate b is elected. However, note that candidate ¢ is not only
the Condorcet winner but also an absolute winner because an absolute majority of
the voters rank candidate a as their top preference.

Example 3.5.5.2 demonstrates the vulnerability of Borda’s procedure to the
truncation paradox.

3.5.5.2 Example
This example is due to Fishbuen (1974, p. 543). Suppose that seven voters have

to elect one out of four candidates « — d under Borda’s procedure, and that their
preference orderings among the candidates are as follows:

No. of voters  Preference ordering

3 a>bs>c>d
1 b>=c=a>d
1 b>c>d>ua
2 c>d>ax>b

Suppose further that under Borda’s procedure with k candidates one assigns & points
to the top-ranked candidate, X — 1 points to the second-ranked candidate, . . ., ! point
to the kth ranked candidate, and 0 points to any non-ranked candidate.

Given the above preference orderings and Borda-point assignment, the number of
points awarded to candidates @, b, ¢, and d, are 19, 19, 20, and 12, respectively, so
candidate c is elected. However, if the first three voters (who are not very happy
with the election of candidate c) decide not to rank (i.e., truncate) candidate c,
then the number of Borda points awarded to candidates a, b, c, and d, are 16, 16,
14, and 12, respectively, so candidates ¢ and b are tied and one of them will be
eventually elected depending on the rule employed for braking ties. This result is
of course preferred by the first three voters to the election of candidate ¢, thereby
demonstrating the truncation paradox.

Example 3.5.5.3 demonstrates the vulnerability of Borda’s procedure to SCC.

3.5.5.3 Example

Suppose that 11 voters have to elect one out of three candidates, a, b, or ¢, under
Borda’s procedure and that their preference orderings among these candidates are
as follows:
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No. of voters  Preference ordering

3 a=c>=b
3 b>=as>c
5 c=b>a

Accordingly, the number of Borda points awarded to candidates a, b, and ¢, are 9,11,
and 13, respectively - so candidate c is elected.

Now suppose that, ceteris paribus, candidate b drops out of the race. In this case
the number of Borda points awarded to candidates a and ¢ are 6 and 5, respectively,
so candidate ¢ would be elected — in violation of SCC.

3.5.6 Demonstrating Paradoxes Afflicting the Alternative
Vote Procedure

Except for being vulnerable to cyclical majorities and to strategic voting, the Alter-
nalive Vote procedure is vulnerable (o the Condorcet winner, lack of monotonicity,
reinforcement, no-show, twin, truncation, preference inversion, and SCC paradoxes.

The same examples that were used to demonstrate the vulnerability of the
plurality with runoff procedure to all these paradoxes (except the truncation
paradox), can also be used to demonstrate the vulnerability of the alternative vote
procedure to these paradoxes.

Specifically, Example 3.5.2.1 above can be used to demonstrate the vulner-
ability of the Alternative Vote procedure to the Condorcet winner, to lack of
monotonicity,'* and to the SCC paradoxes; Example 3.5.2.2 above can be used to
demonstrate the vulnerability of the Alternative Vote procedure to the reinforcement
paradox, Example 3.5.2.3 above can be used to demonstrate the vulnerability of the
alternative vote procedure to the no-show and twin paradoxes, and Example 3.5.2.4
above can be used to demonstrate the vulnerability of the alternative vote procedure
to the preference inversion paradox.

Example 3.5.6.1 demonstrates the vulnerability of the alternative vote procedure
to the truncation paradox.

MA display of negative responsiveness (or lack of monotonicity) under the alternative vote
procedure has actually occurred recently in the March 2009 mayoral election in Burlington,
Vermont. Among the three biggest vole getters, the Republican got the most first-place votes,
the Democrat the fewest, and the Progressive won afler the Democrat was eliminated. Yet if
many of those who ranked the Republican first had ranked the Progressive first, the Republican
would have been eliminated and the Progressive would have lost 1o the Democrat. In March 2010
Burlington replaced the Alternative Vole procedure for electing its mayor with the Plurality with
Runoff procedure — which is also susceptible to negative responsiveness. See detailed report in
http://rangevoting.org/Burlington.html,
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3.5.6.1 Example

This example is due to Nurmi (1999, p. 63). Suppose there are 103 voters whose
preference orderings among four candidates, a, b, ¢, and d, are as indicated below
and who must elect one of these candidates under the alternative vote procedure.

No. of voters  Preference ordering

33 a>=b>c>d
29 b-a>c>d
24 c>b>ax>d
17 d-c>b>»a

Since none of the four candidates is ranked first by an absolute majority of the voters,
candidate d (who is ranked first by the smallest number of voters) is eliminated. As
this does not yet lead to a winner, b is eliminated, whereupon a wins.

Suppose now that, ceteris paribus, those 17 voters who rank a last decide to
truncate their preference ordering and list only their top preference, d. In this case
d will be eliminated first (as before), but since these 17 voters did not indicate their
preference ordering among the remaining candidates, candidate ¢ (rather than b)
will be eliminated thereafter — whereupon b wins. This result is preferred by these
17 voters to the election of 4, thereby demonstrating the truncation paradox.

3.5.6.2 Remark

As stated at the outset of this chapter, the UK conducted a referendum in May
2011 regarding whether to replace its plurality voting procedure in parliamentary
elections with the alternative vote procedure. It may therefore be interesting to
note that when there are only three competing candidates (as is usually the case
in parliamentary elections in England), the alternative vote procedure is more
Condorcet-efficient than the plurality procedure. This is so because, by definition, a
necessary and sufficient condition for a Condorcet winner (or any other candidate) to
be elected under the plurality procedure is that s/he will constitute the top preference
of a plurality of the voters, whereas for a Condorcet winner to be elected under the
alternative vote procedure when there are three candidates it is sufficient (but not
necessary) that the Condorcet winner constitutes the top preference of a plurality of
the voters. This is so because if there exist three candidates, a, b, and ¢, such that
the social preference ordering is @ > b > ¢ and a constitutes the top preference
of the plurality of voters, then either b or ¢ (but not #) must be eliminated in the
first counting round, and as a is the Condorcet winner s/he must necessarily beat the
remaining alternative in the second counting round.

So while it is a sufficient condition for a Condorcet winner to be elected under
the alternative vote procedure when there are three candidates and the Condorcet
winner constitutes the top preference of a plurality of the voters, it is not a necessary
condition because, as can be ascertained from Example 3.5.1.1, a Condorcet winner
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can be elected under the Alternative Vote procedure when there are three candidates
even though it does not constitute the top preference of a plurality of the voters.

However, it is no longer a sufficient condition for a Condorcet winner who is
ranked first by a plurality of the voters to be elected under the alternative vote
procedure once there are more than three candidates. This is demonstrated in
Example 3.5.6.3.

3.5.6.3 Example

This example is due partly to Moshé Machover who provided me general guidance
in its construction {private communication 13.12.2010). Suppose there are 85 voters
whose preference orderings among four candidates, @, b, ¢, and d, are as indicated
below and who must elect one of these candidates under the alternative vote
procedure,

No. of voters  Preference ordering

15 a>b>c>d
10 as>-c>bs>d
13 b=a>c>d
10 b=c>a>d
14 c>a>bs>d
10 c>=b>a>d
6 d>-c>a>b
7 ds>=bs>a>c

The social preference ordering here is ¢ > b > ¢ > d, i.e., candidate a is the
Condorcet winner who is ranked first by a plurality of the voters. However, as none
of the candidates is ranked first by an absolute majority of the voters, one deletes first
candidate d according to the alternative vote procedure, and thereafter one deletes
candidate a, whereupon candidate b becomes the winner.

3.5.7 Demonstrating Paradoxes Afflicting Coombs’ Procedure

Except for being vulnerable to cyclical majorities and to strategic voting, Coombs’
procedure is vulnerable to the same paradoxes afflicting the alternative vote
procedure, i.e., the Condorcet winner, monotonicity, reinforcement, no-show, twin,
truncation, preference inversion, and the SCC paradoxes.

Example 3.5.7.1 demonstrates the vulnerability of Coombs’ procedure to the
Condorcet winner paradox.
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3.5.7.1 Example

This example is due to Nicolaus Tideman (private communication 8.9.2010).
Suppose that 45 voters have to elect under Coombs’ procedure one out of three
candidates, a, b, or ¢, and that their preference orderings among these three
candidates are as follows:

No. of voters  Preference ordering

1 a»=bx>c
10 a>-c>b
11 b>ua>c
11 b>c>ua
10 c>ax>b
2 c>br»>a

The social preference ordering is b > ¢ > a, i.e., b is the Condorcel winner.
However, since none of the candidates is ranked first by an absolute majority of the
voters, one deletes according to Coombs’ procedure the candidate who is ranked
last by the largest number of voters. In the above example this candidate is b,
the Condorcet winner. (After deleting b candidate ¢ is ranked first by an absolute
majority of the voters and is elected.)

3.5.7.2 Remark

It is not clear whether Coombs’ procedure is more Condorcet-efficient than either
the plurality or the alternative vote procedures. As we have already proved in
Remark 3.5.6.2, a necessary and sufficient condition for a Condorcet winner to
be elected under the plurality procedure is that the Condorcet winner constitutes
the top preference of a plurality of the voters. This condition is sufficient (but not
necessary) for a Condorcet winner to be elected under the alternative vote procedure
when there are three candidates. However, as is demonstrated in Example 3.5.7.1
above, this condition is neither necessary nor sufficient for a Condorcet winner to
be elected under Coombs’ procedure. On the other hand, as argued by Coombs
(1964, p. 399), a sufficient condition for a Condorcet winner to be elected under his
proposed procedure is that the voters’ preferences are single-peaked along s single
dimension. But under both the plurality and alternative vote procedures a Condorcet
winner may not be elected when the voters’ preferences are single-peaked along a
single dimension. To see this consider Example 3.5.7.3.

3.5.7.3 Example

Suppose there are 13 voters who must elect one out of three candidates, a, b, or c,
and whose preference orderings among these candidates are as follows:
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No. of voters  Preference ordering

1 a>b>c
2 a>c>b
4 b>=a>»c
6 c>ax>b

Here a is the Condorcet winner, the voters’ preferences are single-peaked, and a is
elected under Coombs’ procedure. However, under the plurality and alternative vote
procedures c is elected.

Example 3.5.7.4 demonstrates the vulnerability of Coombs’ procedure to non-
monotonicity.

3.5.7.4 Example

In Example 3.5.7.1 above candidate ¢ was elecied under Coombs’ procedure
although candidate & is the Condorcet winner. Now suppose that, ceteris paribus,
the 11 voters whose preference ordering is b > a > ¢ (who are not happy with
the prospect that ¢ will be elecled) decide to increase c’s support by changing their
preference ordering to b > ¢ > a. Candidate b is still the Condorcet winner but as
a result of this change a (rather than ») will first be eliminated under Coombs’
procedure, and thereafter b will be elected — in violation of the monotonicity
postulate.

Example 3.5.7.5 demonstrates the vulnerability of Coombs’ procedure to the no-
show, truncation, and preference inversion paradoxes.

3.5.7.5 Example

Suppose there are 15 voters who must elect one out of three candidates, a, b, or ¢,
under Coombs’ procedure, and whose preference orderings among these candidates
are as follows:

No. of voters  Preference ordering

4 a>b>c
4 bs>c»>ua
5 ca>b
2 c>b>a

Here no candidate is ranked first by an absolute majority of the voters. Hence,
according to Coombs’ procedure, a is eliminated in the first round and thereafter
b is elected.

Now suppose that, ceteris paribus, the two voters with preference ordering
¢ > b > a decide not to participate in the election. In this case b is eliminated



52 D.S. Felsenthal

according to Coombs’ procedure in the first round and thereafter ¢ (the abstainers’
top preference!) is elected thereby demonstrating the no-show paradox.

This example can also be used to demonstrate the vulnerability of Coombs’
procedure to the truncation paradox: if the two voters with preference ordering
¢ > b > a decide to list only their top preference then, ceteris paribus, b would be
eliminated according to Coombs’ procedure and thereafter ¢ would be elected!

If, ceteris paribus, all voters invert their preference orderings, then we obtain the
following distribution of voltes:

No. of voters  Preference ordering

4 c>hb>a
4 a>c>b
5 b>=a>c
2 a>=bx>c

As no candidate obtains an absolute majority of the votes in the first counting round,
c is eliminated and thereafter b is elected in the second counting round — thus
demonstrating the vulnerability of Coombs’ procedure to the preference inversion

paradox.
Example 3.5.7.6 demonstrates the vulnerability of Coombs’ procedure to the

Reinforcement paradox.
3.5.7.6 Example

Suppose there are two districts, I and I In district I there are 34 voters whose
preference orderings among three candidates, a, b, and ¢, are as follows:

No. of voters  Preference ordering

9 a>b>c
9 b>c>ua
11 ca>b
5 c>b>a

and in district II there are seven voters whose preference orderings among the thre:
candidaltes are as follows:

No. of voters  Preference ordering

1 a>hs>c
6 b>ua>c

Since no candidate is ranked first by an absolute majority of the voters in district ]
candidate ¢ is eliminated under Coombs’ procedure in the first round, and thereafte



L8

3 Review of Paradoxes Afflicting Procedures for Electing a Single Candidate 53

candidate b is elected. In district II candidate b is ranked first by an absolute majority
of the voters and is elected right away.

However, if, ceteris paribus, the two districts are amalgamated into a single
district of 41 voters then one obtains the following distribution of preferences:

No. of voters  Preference ordering

10 a>h>c
6 b>a>c
9 b>c>ua
11 c>ax>b
5 c>b>ua

Since none of the three candidates is ranked first in the amalgamated district,
candidate ¢ is eliminated according to Coombs’ procedure in the first round,
and candidate a (rather than b) is elected thereafter — thus demonstrating the
reinforcement paradox.

Example 3.5.7.7 demonstrates the vulnerability of Coombs’ procedure to the
Twin paradox.

3.5.7.7 Example
Suppose there are 20 voters who have to choose one out of four candidates, a,b,c,

or d, under Coombs’ procedure and whose preference orderings among these
candidates are as follows:

No. of voters  Preference ordering
5 a>b>d>c
b>c>d>u
b>a>ds>c
c>a>dsbh
c>b>axd
c>b>d>ua

B o= N =

Since no voter is ranked first by an absolute majority of the voters, candidate « is
eliminated according to Coombs’ procedure in the first round and thereafter b is
elected.

Now suppose that, ceteris paribus, two more voters with preference ordering
b > a > d > c join the electorate thereby apparently increasing the chances
of candidate b to be elected. However, as result of this increase of the electorate
candidate ¢ (rather than a) will be eliminated in the first round under Coombs’
procedure, and thereafter a tie will be created between candidates ¢ and b - thereby
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decreasing the chances of candidate b to be elected if the tie is to be broken
randomly.
Example 3.5.7.8 demonstrates the vulnerability of Coombs’ procedure to SCC.

3.5.7.8 Example

Suppose that there are 29 voters having to elect under Coombs’ procedure one out
of four candidates, a, b, c, or d, and whose preference orderings among the four
candidates are as follows:

No. of voters  Preference ordering

11 a>b>c»>d
12 bs>c>d>a
2 b>a>d>c
4 c~ax>d>b

Since none of the candidates is ranked first by an absolute majority of the voters,
one deletes according to Coombs’ procedure the candidate who is ranked last by the
largest number of voters. In the above example this candidate is a. After deleting ¢
candidate b is ranked first by an absolute majority of the voters and is elected.

Now suppose that, ceferis paribus, candidate ¢ drops out of the race. As a result
candidate a is ranked first by an absolute majority of the voters and is elected -
contrary to SCC,

3.5.8 Demonstrating Paradoxes Afflicting Bucklin’s Procedure

Except for being vulnerable to cyclical majorities and to strategic voting, Bucklin’s
procedure is vulnerable to the Condorcet winner, Condorcet loser, reinforcement,
no-show, twin, truncation, preference inversion, and SCC paradoxes.

Example 3.5.7.1 above can be used to demonstrate the susceptibility of Bucklin’s
procedure to the Condorcet winner paradox. In this example b is the Condorcet
winner but under Bucklin’s procedure a is elected because the number of voters
(32) who rank « first or second exceeds the number of voters (25) who rank b first
or second.

Example 3.5.8.1 demonstrates that a Condorcet loser may be elected under
Bucklin’s procedure.

3.5.8.1 Example

This example is due to Tideman (2006, p. 197, Example 13.13). Suppose there are
29 voters whose preference orderings among four candidates, w, x, y, z, are as
follows:
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No. of voters  Preference ordering

h

W>X>y>2z
W>Z>X>Yy
X>y>w>z
X>Z>y>w
PrEwesX >z
yrI=w>Xx
I>WrX>y
I>X>Y>Ww
Iy rwrx

W RN WN B W

The social preference ordering here contains a top cycle (w > x > y > w), but
since each of the three candidates w, x, y beats candidate z in pairwise contests,
candidate z is a Condorcet loser. However, under Bucklin’s procedure candidate z
will be elecled because the number of voters (16) who rank z first or second in their
preference ordering exceeds the number of voters who rank any of the other three
candidates in first or second place in their preference ordering.

Example 3.5.8.2 demonstrates the vulnerability of Bucklin’s procedure to the
Reinforcement paradox.

3.5.8.2 Example
This example is due to Tideman (2006, p. 205, Example 13.19). Suppose the are two

districts, T and II. In District I there are 15 voters whose preference ordering among
three candidates, a, b, c, are as follows:

No. of voters  Preference ordering

6 a»c»b
5 b>as»c¢
4 c>b>ua

and in district Il there are nine voters whose preference orderings among the same
three candidates are as follows:

No. of Voters  Preference Ordering

5 a>b>c¢
4 c>=bh-ua

Given these data a will be elected under Bucklin’s procedure in district I (in the
second counting round with 11 votes), as well as in district [I (in the first counting
round with five votes).

However if, ceteris paribus, the two districts are amalgamated into a single
district, we obtain a district of 24 voters with the following preference orderings
among the three candidates:
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No. of voters  Preference ordering

5 a>b>c
6 a>c>b
5 b=ax»c
8 c>b>a

In this amalgamated district candidate b will be elected under Bucklin’s procedure
(in the second counting round with 18 votes) — in violation of the reinforce-
ment axiom.

Example 3.5.8.3 demonstrates the susceptibility of Bucklin’s procedure to the
no-show, twin, and truncation paradoxes.

3.5.8.3 Example

Suppose there are 101 voters whose preference orderings among four candidates,
a, b, ¢, and d, are as follows:

No. of voters  Preference ordering

43 a>-b»>c>d
26 b>c>d>u
15 c>d>b>a
17 d=a>b>c

If one of the four candidates must be elected under Bucklin’s procedure then
candidate » would be elected because the number of voters (69) who rank b first
or second in their preference ordering exceeds the number of voters who rank any
of the other candidates in first or second place in their preference ordering.

Now suppose that ceferis paribus, 16 of the 17 voiers whose top preference is d
decide not to participate in the election. As a result candidate a would be elected
because an absolute majority of the voters (43) rank 4 as their top preference. This
result is preferable for all the voters whose top preference is d who thus obtain
their second preference (instead of their third preference) — thereby demonstrating
simultaneously both the No-Show and twin paradoxes.

To demonstrate the vulnerability of Bucklin’s procedure to the truncation
paradox suppose that in the above example the 43 voters whose top preference is
a decide to list only their top preference. In this case ¢ would be listed first or
second by 60 voters — which is more than any other voter is listed first or second —
thereby elected under Bucklin’s procedure, an outcome which these 43 voters prefer
to the election of b.

Example 3.5.8.3 above can also be used to demonstrate the vulnerability of
Bucklin’s procedure to SCC. We just saw that in this example candidate b is elected
(with 69 votes in the second counting round) under Bucklin’s procedure when all
four candidates and 101 voters participate in the election. However, ceteris paribus,
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a is elected under Bucklin’s procedure (in the first counting round with 60 votes) if
candidate d drops out of the race — thereby demonstrating the violation of the SCC
postulate.

Example 3.5.8.4 demonstrates the vulnerability of Bucklin’s procedure to the
preference inversion paradox.

3.5.8.4 Example

Suppose that there are four voters whose preference orderings among five candi-
dates, a, b, ¢, d, and e, are as follows:

No. of voters  Preference ordering

as=hbsc>d>e

1 e>d>c>b>a
1 b=es-c>a»d
1 dra>c>e>b

If one of the four candidates must be elected under Bucklin’s procedure then
candidate ¢ would be elected because the number of voters (3) who rank ¢ first,
second, or third in their preference ordering exceeds the number of voters who rank
any of the other candidates in first, second or third place in their preference ordering.
Now suppose that, ceteris paribus, all voters invert their preference orderings
among the four candidates. In this case ¢, who is placed in the middle of all
candidates’ preference orderings, would still be elected — thus demonstrating the
vulnerability of Bucklin’s procedure to the preference inversion paradox.

3.5.9 Demonstrating the Paradoxes Afflicting the range Voting
(RV) Procedure

Except for being vulnerable to cyclical majorities and to strategic voting, the
Range Voting (RV) procedure is vulnerable to the Condorcet winner paradox, the
Condorcet loser paradox, the absolute winner paradox, the absolute loser paradox,
and to the Truncation paradox.

In contrast to all other voting procedures except majority judgment (MJ) where a
necessary condition to demonstrate the paradoxes afflicting them is that there exist al
least three candidates, it is possible to demonstrate most of the paradoxes afflicting
the RV (and MIJ) procedure when there are just two candidates. The paradoxes
afflicting the MJ procedure will be demonstrated in the next subsection.

Example 3.5.9.1 demonstrates simultaneously the vulnerability of the RV proce-
dure to the first four paradoxes listed above.
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3.5.9.1 Example

Suppose there are five voters, Vi, Va, Vi, Vg, and Vs, who award the following
(cardinal) grades (on a scale of 1-10) to two candidates, x and y:

Candidates /voters V; Va2 V3 V; Vs Mean grade

X 2 2 2 3 10 38
y 1 1 1 10 7 40

As the mean grade of candidate y is higher than that of candidate x, candidate
y is elected by the RV procedure. However, note that an absolute majority of the
voters (V, Vs, Vi, Vs) awarded candidate x a higher grade than they awarded to
candidate y, and an absolute majority of the voters (V, V2, and V3) awarded y the
lowest grade. Hence candidate x is not only a Condorcet winner but also an absolute
winner, whereas candidate v is not only a Condorcet loser but also an absolute loser.

Example 3.5.9.2: demonstrates the vulnerability of the RV procedure to the
truncation paradox.

3.59.2 Example

Suppose there are seven voters, V-V5, who award the following (cardinal) grades
(on a scale of 1-10) to two candidates, x and y:

Candidates/voters Vi Va2 Vi Vi Vs Vg V3 Meangrade

X 1 1 1 10 5 4 7 4143
y 2 2 2 3 8 5 8 4.286

As the mean grade of candidate y is higher than that of candidate x, candidate )
is elected by the RV procedure. However, as voter V4 grades candidate x highe
than y he is not satisfied with this result and will be better off if he does not grad:
candidate y at all, thereby demonstrating the truncation paradox. (Ceferis paribus
if voter V4 does not grade candidate y then this candidate will be deemed to hawt
been awarded the lowest grade (1) by voter V4 and, as a result, the average grade o
candidate y will drop to 4.0 thus electing candidate x.)

3.5.10 Demonstrating Paradoxes Afflicting the Majority
Judgment (Mj) Procedure

The paradoxes afflicting the majority judgment (MJ) procedure are discussed ¢
length in Felsenthal and Machover (2008).

Except for being vulnerable to cyclical majorities and to strategic voting, th
MJ procedure is vulnerable to the Condorcet winner paradox, the Condorcet lose
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paradox, the Absolute Winner paradox, the absolute loser paradox, the Truncation

paradox, the Reinforcement paradox, the no-show paradox, and to the Twin paradox.
Example 3.5.10.1 demonstrates the vulnerability of the MJ procedure to the abso-

lute winner, Condorcet winner, the absolute loser and Condorcet loser paradoxes.

3.5.10.1 Example

This example is due to Felsenthal and Machover (2008, p. 330). Suppose there are
three volers, V|, Vs, and V3, who award the following (ordinal) grades (on a scale
of A-H) to two candidates, x and y:

Candidate/voter V; V; V3 Median grade

X B C H C
y A F G F

As the median grade of candidate y is higher than that of candidate x, candidate
y is elected by the MJ procedure. However, note that an absolute majority of the
voters (V) and V3) awarded candidate y a lower grade than they awarded candidate
x —hence candidate x is not only a Condorcet winner but also an absolute winner,
whereas candidate y is not only a Condorcet loser but also an absolute loser.

Example 3.5.10.2 demonstrates the vulnerability of the MJ procedure to the
reinforcement paradox.

3.5.10.2 Example

This example is due to Felsenthal and Machover (2008, p. 327).

Suppose there are three regions, 1, II, and II1, in each of which 101 voters grade
each of iwo candidates, x and y, on an ordinal scale A-D. The following lists
show the distributions of grades. The figure next to a grade is the number of voters
awarding that grade,

Region 1

x: 21A 31B 48C ID

y: 40A 11B 48C 2D
Region I1

x: 1A 46B 14C 40D

y: 1A 45B 33C 22D
Region 111

x: 40B 20C 41D

y: 48B 3C 50D

In all three elections the two candidates have equal median grades (median grade B
in region I and median grade C in regions II, III), so the tie-breaking algorithm
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proposed by Balinski and Laraki (2007, 2011) must be used. The number of
iterations required for breaking the tie in each of the three regions are 2, 7, and
2, respectively, whereupon y wins in each of the three regions.'?

However, if the three regions are amalgamated into a single region we obtain the
following distribution of grades awarded to candidates x and y by the 303 voters:

Amalgamated region:

x: 22A 117B 82C 82D
y: 41A 104B B84C 74D

Here again candidates x and y obtain the same median grade (C), but when one
breaks this tie (after 13 iterations) x wins — in violation of the Reinforcement
postulate.

Example 3.5.10.3 demonstrates the vulnerability of the MJ procedure to the no-
show and twin paradoxes.

3.5.10.3 Example
This example is due to Felsenthal and Machover (2008, p. 329).

Suppose that seven voters, V|-V, grade two candidates, x and y, on an ordinal
scale ranging between A and F, as follows:

Candidate/voter V; V3 V3 V; Vs Vg V; Median grade

X A A A D E E F D
y B B B C F F F C

Here x wins. But now suppose that voters V; and V3, both of whom awarded the
same grades as voter V3, and who prefer candidate y, abstain from voting. Then
we get:

Candidate/voter V3 V3 Vs Vg V; Median grade

X A D E E F E
y B C F F F F

Here y wins. Thus by abstaining voters V| and V3 cause their favorite candidate to
win — thereby demonstrating the vulnerability of the MJ procedure to the no-show

13T break a tie between two leading candidates who have the same median grade, one performs
one or more iterations in each of which the equal median grade of the two candidates is dropped.
This process continues until one reaches a situation where the candidates” median grades are no
longer the same. If no such situation is reached then the tie is broken randomly. With an even
number of grades Balinski and Laraki take the median to be the lower of the two middle grades.
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paradox. Similarly, since V3 prefers candidate y to x, one could expect that if,
ceteris paribus, the two “twins” (V, and V1) — who grade the two candidates in
the same way as V3 — would join the electorate, then y would certainly be elected.
However, as can be seen from the first table, in this case x would be elected, thereby
demonstrating the vulnerability of the MJ procedure to the twin paradox.

Example 3.5.10.4 demonstrates the vulnerability of the MJ procedure to the
truncation paradox.

3.5.10.4 Example

Suppose there are seven voters, Vi-V5, who award the following (ordinal) grades
{on a scale of A- J) to two candidates, x and y:

Candidate/voter V; V2 V3 Vs, V5 Vg V; Mediangrade

X A A A J E D G D
y B B B C H E H C

Here x is elected because his median grade is higher than that of y. Voter Vg
does not like this result so if, ceteris paribus, he decides to grade only candidate
y, then candidate x would be deemed to have been awarded the lowest grade (A)
by Vs and, consequently, candidate x’s median grade would drop from D to A -
causing candidate y to be elected. Voter Vg of course prefers this result — thereby
demonstrating the truncation paradox.

3.5.11 Demonstrating Paradoxes Afflicting
the Minimax Procedure (aka Simpson—-Kramer or
Condorcet’s Procedure)

Except for being vulnerable to cyclical majorities and to strategic voting, the Mini-
max procedure (aka Condorcet’s procedure or Simpson—Kramer rule) is vulnerable
to the Condorcet loser, absolute loser, no-show, twin, truncation, reinforcement,
preference inversion, and SCC paradoxes.

When the social preference ordering contains a top cycle it is possible that the
minimax procedure will elect a Condorcet loser which may also be an absolute loser.
Example 3.5.11.1 demonstrates this.

3.5.11.1 Example

Suppose there are 11 voters whose preference orderings among four candidates,
a, b, ¢, d, are as follows:
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No. of voters  Preference ordering

2 d>a>c>b
3 d>bsa>c
3 c>b>ax>d
1 b>a>c>d
2 a>c>b>d

This preference profile can be depicted as the following matrix of paired compar-
isons. In such a matrix, the entry in row / and column j is the number of voters who
rank candidate i ahead of candidate j.

a b ¢ d
a - 4 8 6
b 7 - 4 6
¢c 3 7 - 6
d 5 5 5 -

As an example of how the numbers in this paired comparisons matrix are calculated,
the number 4 in the second column of the first row derives from the two voters in the
first row of the example plus the two voters in the last row of the example who rank
a ahead of b. Similarly, the number 7 in the first column of the second row derives
from the three voters in the second row of the example, plus the three voters in the
third row of the example, plus the one voter in the fourth row of the example, who
rank b ahead of a.

As can be seen from the paired comparisons matrix, the social preference
ordering in Example 3.5.11.1 contains atop cycle [b > a > ¢ > b] » d, ie,
d is the Condorcet loser which happens to be also an absolute loser. However, the
minimax procedure will elect 4 because d’s worst loss margin (6} is smaller than
the worst loss margin of each of the other three candidates (7, 7, 8 for a, b, c,
respectively).

This example can also be used to demonstrate the vulnerability of the minimax
procedure to the preference inversion paradox. If all voters invert their preference
orderings then d becomes an Absolute Winner and hence is elected under the
minimax procedure.

Example 3.5.11.2 demonstrates the vulnerability of the minimax procedure to the
no-show and twin paradoxes.

3.5.11.2 Example

This example is due to Hannu Nurmi (private communication 22.2.2010; this
example appears also in section 10.5.5 in this volume). Suppose there are 19 voters
who must elect one out of four candidates, ¢, b, ¢, d and whose preference
orderings among these candidates are as follows:
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No. of voters  Preference ordering

5 d>=b>cr»u
4 bsc»>ax>d
3 a>-d>c>b
3 a>d>b>c
4 c>a>b>d

These preference orderings can be depicted as the following paired comparisons
matrix:

a b ¢ d
a - 10 6 14
b 9 - 12 8
c 13 7 - 8
d 5 11 11 -

Here the social preference ordering is cyclical (¢ > a > d > b > ¢). So
according to the Minimax procedure one should elect that candidate whose worst
Joss is smallest. From the paired comparisons matrix it is seen that the worst loss of
candidates a, b, ¢, d,is 13, 11, 12, and 14, respectively, so candidate b is elected.

Now suppose that, ceteris paribus, three of the four voters with preference
ordering ¢ > a > b > d decide not to participate in the election. In this case
the paired comparisons matrix changes as follows:

a b ¢ d
a - 7 6 11
b 9 - 12 5
¢c 10 4 - 5
d 5 11 11 -

The social preference ordering is still cyclical but the worst losses of the four
candidates are now 10, 11, 12, 11 for candidates a, b, ¢, d, respectively, so
according to the minimax procedure candidate ¢ is elected — which is preferable
from the point of view of the absent voters — thereby demonstrating the vulnerability
of the minimax procedure to the no-show paradox.

We also have here an instance of the twin paradox. We have just seen that
if, ceteris paribus, only one of the four voters whose preference orderings are
¢ > a > b > d participates in the election then according to the minimax
procedure candidate a is elected. But if this voter’s three twin brothers join the
electorate then, as we have seen at the beginning of Example 3.5.11.2, candidate
b is elected according to the minimax procedure — thereby demonstrating this
procedure’s vulnerability to the twin paradox.

Example 3.5.11.3 demonstrates the vulnerability of the minimax procedure to the
truncation paradox.
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3.5.11.3 Example

This example is due to Hannu Nurmi (private communication 23.2.2010; this
example appears also in section 10.5.5 in this volume). As we have seen in the
first part of Example 3.5.11.2, candidate b would be elected under the minimax
procedure. Now suppose that, cereris paribus, the four voters whose preference
ordering is ¢ > « > b > d would decide to state only their top two preferences, ¢
and a. This would lead 10 the assumption that the probability that these voters prefer
b to d is equal to the probability that they prefer d to b, which would result, in turn,
in the following paired comparisons matrix:

a b ¢ d
a - 10 6 14
b 9 - 12 6
c 13 7 - 8
d 5 13 11 -

From this paired comparisons matrix it is easy to see that candidate c’s largest loss
(12 against candidates b) is smallest, hence this candidate will be elected under
the minimax procedure — which is certainly preferable for the voters whose top
preference is ¢ — thus demonstrating the vulnerability of the minimax procedure to
the truncation paradox.

Example 3.5.11.4 demonstrates the vulnerability of the minimax procedure to the
reinforcement paradox.

3.5.11.4 Example

Suppose there are two districts, one with 11 voters whose preference orderings
among four candidates are as in Example 3.5.11.1 and a second district with three
voters two of whom have preference ordering d > a > b > ¢ and the third voter
has preference ordering b > a > ¢ > d.

As we have seen in Example 3.5.11.1, candidate d will be elected in the first
district, and as candidate d is the absolute winner in the second district s/he will
also be elected in the second district under the minimax procedure.

Now suppose that, ceteris paribus, these two districts are amalgamated into one
district of 14 voters having the following paired comparisons matrix:

a b ¢ d
a - 6 11 7
b 8 - 7
c 4 7 - 1
d 7 71 7 -

From this paired comparisons matrix it is easy to see that there is a tie between
candidates b and d because the largest loss of both of them is smallest (7),
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thus according to the minimax procedure a lottery should be conducted between
them — thereby demonstrating the vulnerability of the minimax procedure to the
reinforcement paradox,

Example 3.5.11.5 demonstrates the vulnerability of the minimax procedure

to SCC.

3,5.11.5 Example

This example is due to Fishburn (1974, p. 540). Suppose there are seven voters who
are divided into three groups who have to select under the Minimax procedure one
out of four candidates, a, b, ¢, or d, and whose preference orderings among these
candidates are as follows:

Group No. of voters  Preference ordering

Gl 3 d=c>bs>u
G2 2 a>ds>=c>bh
G3 2 b=as>d>c

From this preference list we see that the social preference ordering is cyclical (a >
d > ¢ > b > a). It can be depicted as a (cyclical) paired comparisons matrix as
follows:

a b ¢ d
a - 2 4 4
b 5 - 2 2
c 3 5 - 0
d 3 5 7 -

From this matrix we can see that the worst loss of candidate a is 5 (against candidate
b), the worst loss of candidate b is also 5 (againsi candidates ¢, d), the worst loss of
candidate ¢ is 7 (against candidate d) and the worst loss of candidate d is 4 (against
candidate a). As candidate d’s loss is the smallest, this candidate would be elected
under the minimax procedure.

Now suppose that, ceteris paribus, candidate b drops out of the race. In this case
candidate ¢ becomes the absolute winner and will be elected under the minimax
procedure - in violation of SCC.

3.5.12 Demonstrating Paradoxes Afflicting Dodgson’s Procedure

Except for being vulnerable to cyclical majorities and 1o strategic voting, Dodgson’s
procedure is vulnerable to the Condorcet loser, lack of monotonicity, reinforcement,
no-show, twin, truncation, preference inversion, and SCC paradoxes.
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Example 3.5.12.1 demonstrates the vulnerability of Dodgson’s procedure to the
Condorcet loser paradox.

3.5.12.1 Example

This example is due to Fishburn (1977, p. 477). Suppose there are seven voters
whose preference orderings among eight candidates, a, b, ¢, d, e,f, g, x, are as
follows:

No. of voters Preference ordering

1 a>bh>c>d>x>e>f>g
grax>b>c>x>d>ex> f
f=g-a>b>x>c>d>e
e>f>gra>x>b>c>d
d>e>f>g>-x>a>b>c
c>d>e> f>x>g>ax>b
bc>d>e>x>f>g>ua

I e e s ]

The social preference ordering contains atopcycle[a > b >c >d > e > f >
g > a] > x. It can be presented by the following paired comparisons matrix:

a b ¢ d e f g x
a - 6 5 4 3 2 1 4
b 1 - 6 5 4 3 2 4
c 21 - 6 5 4 3 4
d 3 2 1 - 6 5 4 4
e 4 3 2 1 - 6 5 4
f 5 4 3 2 1 - 6 4
g 6 5 4 3 2 1 - 4
x 3 3 3 3 3 3 3 -

As can easily be seen from this matrix, candidate x is a Condorcet loser as this
candidate is beaten in pairwise comparisons by each of the other seven candidates.
Nevertheless, candidate x will be elected in this case by Dodgson’s procedure
because for x to become a Condorcet winner only four preference inversions are
needed {e.g., it is sufficient for any of the voters to move candidate x from fifth to
first place in his preference ordering), whereas for any of the other candidates to
become a Condorcet winner at least six preference inversions are needed.

This example can also be used to demonstrate the vulnerability of Dodgson’s
procedure to the Preference Inversion paradox. If all voters invert their preference
orderings in this example then x becomes a Condorcet winner and hence is elected
under Dodgson’s procedure.

Example 3.5.12.2 demonstrates the vulnerability of Dodgson’s procedure to lack
of monotonicity. At least four candidates must exist for this to occur (Fishburn,
1982, p. 132).
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3.5.12.2 Example

This example was adapted by Hannu Nurmi (private communication 15.2.2010)
from Fishburn (1977, p. 478). Suppose there are 100 voters who are divided into four
groups, who must elect one out of five candidates ¢, b, ¢, d, e, under Dodgson’s
procedure, and whose preference orderings among the candidates are as follows:

Group No. of voters  Preference ordering

Gl 42 b=a>c>d»>e
G2 26 a-e>c>b>d
G3 21 e>d>b>ax»c
G4 11 e>a>b>d>c

The social preference ordering has atopcycle: [b > a > e > b] > ¢ > d.Itcan be
depicted as the following paired comparisons matrix:

a b ¢ d e

a - 37 100 79 68
b 63 - 74 79 42
c 0 26 - 68 42
d 21 21 32 - 42
e

32 58 58 58 -

For candidate a to become the Condorcet winner at least 14 voters in group G1 must
change b > a in their preference ordering to ¢ > b, i.e., a total of 14 changes.

For candidate b to become the Condorcet winner at least nine voters from group
G4 must first change ¢ > b to b > a and thereafter ¢ > b 1o b > e in their
preference ordering, i.e., a total of 18 changes.

For candidate e to become the Condorcet winner at least 19 voters in group G2
must change a > e in their preference ordering to ¢ > a, i.e., a total of 19 changes.

Since the number of changes needed in the voters’ preference orderings in order
for @ to become the Condorcet winner is the smallest, ¢ would be elected under
Dodgson’s procedure.

Now suppose that, ceteris paribus, the 11 voters in group G4 increase their
support of candidate a by changing their preference orderings frome > a > b >
d > ctoa > e > b >d > c. This change can be depicted by the following paired
comparisons matrix:

a - 37 100 79 79
b 63 - 74 79 42
¢c 0 26 - 68 42
d 21 21 32 - 42
e 21 58 58 58 -
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From this matrix it is possible to see that despite the increase in a’s support it would
still take at least 14 persons from group G1 to change in their preference orderings
b > atoa > b in order for a to become the Condorcet winner, whereas now for b
to become the Condorcet winner only nine voters in G4 would have to change e > b
to b > e in their preference orderings. So since the number of changes needed for
b to become the Condorcet winner is smallest, & would be elected under Dodgson’s
procedure — thereby demonstrating lack of monotonicity.

The first part of Example 3.5.12.2 can also be used to demonstrate the vulnerabil-
ity of Dodgson’s procedure to the no-show and twin paradoxes. If 20 of the 21 voters
in group G3 decide not to participate in the election then b becomes the Condorcet
winner and will be elected according 1o Dodgson’s procedure. The election of b
is of course preferred by the members of group G3 over the election of a thus
demonstrating the vulnerability of Dodgsen’s procedure to the no-show paradox.
Adding those 20 twins back to retrieve the original profile shows that Dodgson’s
procedure is also vulnerable to the Twin paradox.

Example 3.5.12.2 can also be used to demonstrate the vulnerability of Dodgson’s
procedure (o SCC. As we have seen from the paired comparisons matrix of the first
part of Example 3.5.12.2 candidate a is selected by Dodgson’s procedure. However
if, ceteris paribus, candidate ¢ drops out of the race then candidate b becomes the
Condorcet winner and is elected by Dodgson’s procedure — in violation of SCC.

Example 3.5.12.3 demonstrates the vulnerability of Dodgson’s procedure to the
Reinforcement paradox.'¢

3.5.12.3 Example

This example is due to Fishburn (1977, p. 484). Suppose there are two districts, 1
and I1, in each of them one of four candidates, w, x, y, z, must be elected.

In district I there are seven voters, four with preference ordering x > y >z > w
and three with preference ordering y > x > z > w. Since x is here the Condorcet
winner, x is elected according to Dodgson’s procedure.

'Note that by increasing a’s support, the 11 voters of group G4 obtained the election of b which for
them is a less preferable aiternative than the election of a. In demonstrating the non-monotonicity
paradox under the other four procedures surveyed in this chapter that are susceptible to this paradox
(Plurality with Runoff, Alternative Vote, Coombs, Nanson), it is exemplified not only that an
original winner, w, loses after one or more voters, ¥}, increase their support of w by moving w
upwards in their preference ordering, but also that the voters belonging to V; benefir from this
because the new winner, y, is ranked higher than w in V;’s original preference ordering. However,
under Dodgson’s procedure it is impossible to construct such an example because when w rises in
V,’s ranking, the indirect benefit, if any, goes to the candidates ranked below sw in V;’s preference
ordering who now find the candidates who had been ranked above w more accessible. But if V;’s
initial ranking is assumed to be sincere, then it follows, by definition, that the members of V; prefer
w over any of the candidates ranked below w. So if some candidate ranked below w’ is elected then
the members of V; are harmed. Hence non-monotonicity under Dodgson’s procedure cannot arise
from considerations of strategic voting. [ am grateful to Nicolaus Tideman for this insight (private
communication 3.8.2011).
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In district II there are 12 voters whose preference orderings are as follows:

No. of voters  Preference ordering

1 X>y>Z=w
2 Yy x>=z>w
3 W>y>X>2
3 I>wWry>Xx
3 X>Z>W>Yy

These orderings can be presented as the following paired comparisons matrix:

w X ¥y z
w — 6 9 3
x 6 - 4 9
y 3 8 - 6
z 9 3 6 -

Here the social preference ordering is cyclical [w > y > x > z > w]. Forx to
become the Condorcet winner only four preference inversions are needed (the two
voters whose top preference is y should change their top preference to x, and one
of the three voters whose top preference is w should change his top preference to
x), whereas for any of the other candidates to become a Condorcet winner more
than four preference inversions are needed. So according to Dodgson’s procedure
candidate x is elected also in district II.

Now suppose that, ceteris paribus, the two districts are amalgamated into a single
district with 19 voters. In this case candidate y becomes the Condorcet winner and is
elected according to Dodgson’s procedure — thereby demonstrating its vulnerability
to the Reinforcement paradox.

Example 3.5.12.4 demonstrates Dodgson’s vulnerability to the Truncation para-
dox.

3.5.12.4 Example

Suppose there are 49 voters whose preference orderings among five candidates,
u, b, c, d, e are as follows:

No. of voters  Preference ordering

11 b=a>d>e>c
10 e>c>b>d>ua
10 d>=c>d>bs>e

e>=c>d>b>a
e>=d>c>b>a
c>b>-a>d>e
d>c>b>a>e
a>b>ds>=e>c
e-d>a>b>c

O o= = NN
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These orderings can be presented as the following paired comparisons matrix:

a b ¢ d e

a - 21 32 24 25
b 28 - 22 24 25
c 17 271 - 24 13
d 25 25 25 - 25
e

24 24 36 24 -

Here candidate 4 is the Condorcet winner so this candidate is elected according
to Dodgson’s procedure. However, if the 10 voters whose preference ordering is
e > d > a > b > ¢ decide to reveal only their top preference (e¢) — in which case
one assumes that these voters prefer candidate e over all the other four candidates
and that all possible preference orderings among these candidates are equiprobable—
then one obtains the following paired comparisons matrix:

a b ¢ d e

a - 16 27 29 25
b 33 - 17 29 25
c 22 32 - 29 13
d 20 20 20 - 25
e

24 24 36 24 -

From this matrix we see that the social preference ordering is cyclical (d > ¢ >
¢ > b > a > d). So according to Dodgson’s procedure candidate ¢ is elected
in this situation because for candidate e to become a Condorcet winner only three
preference inversions are needed (if one of the 11 b > a > d > ¢ > ¢ voters will
change his preference orderingtoe > b > a > d > ¢), whereas for any of the other
candidates to become a Condorcet winner more than three preference inversions are
needed — thereby demonstrating the vulnerability of Dodgson’s procedure to the
truncation paradox.

3.5.13 Demonstrating the Paradoxes Afflicting Black’s Procedure

Since Black’s procedure is a hybrid procedure (when a Condorcet winner exists it
elects the Condorcet winner, and when a Condorcet winner does not exist it elects
the Borda winner), it is vulnerable to the no-show, twin, truncation, reinforcement,
and SCC paradoxes. Although Black’s procedure is not vulnerable to the Condorcet
loser paradox, it may violate Smith’s (1973) Condorcet principle.

Example 3.5.13.1 demonstrates the vulnerability of Black’s procedure to the no-
show, twin, and truncation paradoxes.
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3,5.13.1 Example

This example is partly due to Hannu Nurmi (private communication, 15.2.2010; this
example appears also in section 10.5.1 in this volume). Suppose there are 16 voters
whose preference orderings among five candidates, a, b, ¢, d, e, are as follows:

No. of voters  Preference ordering

3 d>=e>a>b>c
3 e>-a>c>b>d
4 c>d>e>-a>b
3 d>e>b>c>a
3 e>b>a>=d>c

Here d is the Condorcet winner and hence is elected under Black’s procedure.
Suppose now that, ceteris paribus, two of the voters whose preference ordering is
e = b > a > d > ¢ decide not to participate in the election. As a result the social
preference ordering becomes cyclical (@ > b = ¢ = d > e > a) and ¢ emerges as
the Borda winner and is therefore elected under Black’s procedure. Since e is ranked
first by the two absent voters, it turns out that they obtained a better outcome by not
participating in the election — thereby demonstrating the vulnerability of Black’s
procedure to the no-show paradox.

We also have here an instance of the Twin paradox: if, ceteris paribus, the two
absent voters decide to participate in the election and join their twin brother, then
d becomes the Condorcet winner and will be elected under Black’s procedure —
thereby demonstrating the vulnerability of Black’s procedure to the twin paradox.

Obviously, not voting at all is an extreme version of truncation and hence the
above example can also be used to show that Black’s procedure is vulnerable to
the truncation paradox. Thus if, ceteris paribus, all three voters whose preference
orderingis ¢ > b > a > d > c truncate their preference ordering after a, i.e., if
they do not express their preferences between ¢ and d — which would automatically
be considered to mean that they prefer each of the three ranked alternatives over ¢
and ¢ and are indifferent between ¢ and d — then the social preference ordering will
become cyclic {d > ¢ > a > b > ¢ > d) and ¢ will emerge as the Borda winner to
be elected under Black’s procedure — which is a preferable outcome for these voters.

The vulnerability of Borda’s procedure (and hence also Black’s) to the truncation
paradox when a Condorcet winner does not exist initially is demonstrated in
Example 3.5.5.2 above.

Example 3.5.13.2 demonstrates the vulnerability of Black’s procedure to the
reinforcement paradox.

3.5.13.2 Example

Suppose there are two districts, 1 and II. In district I there are five voters whose
preference orderings among three candidates, a, b, and ¢, are as follows:
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No. of voters  Preference ordering

2 a=b>rc
2 b>c>a
1 c=ax>b

and in District I1 there are nine voters whose preference orderings among these three
candidates are as follows:

No. of voters Preference ordering

5 b»c»>a
4 c=a»>b

The social preference ordering in district I is cyclical (@ > b > ¢ > 4), soaccording
to Borda’s (and Black’s) procedure candidate b, whose Borda score (6) is largest, is
elected in this district. In district Il candidate b is the Condorcet winner, so according
to Black’s procedure b is elected in this district too.

Now suppose that, ceteris paribus, the two districts are amalgamated into a single
large district of 14 voters whose preference ordering among the three candidates are
as follows:

No. of voters Preference ordering

2 a>b>c
7 b>c¢c»>ua
5 c>a>bhb

As the social preference ordering in the amalgamated district is cyclical (¢ > a =
b > ¢) candidate c is elected in this district because his Borda score (17) is largest —
thus demonstrating the vulnerability of Black’s procedure to the reinforcement
paradox.

The vulnerability of Black’s procedure to SCC is demonstrated in Example
5.11.5 above. When all four candidates compete the social preference ordering is
cyclical (¢ > d > ¢ > b > a) so according to Black’s procedure candidate d
is elected because this candidate has the highest Borda score (15). But if, ceteris
paribus, candidate b drops out of the race then candidate ¢ becomes the Condorcet
winner and is therefore elected according to Black’s procedure — contrary to SCC.

Example 3.5.13.3 demonstrates the violation of Smith’s (1973) Condorcet
principle by Black’s procedure.

3.513.3 Example

This example is due to Fishburn (1977, p. 480). Suppose there are five voters whose
preference orderings among eight candidates a, b, ¢, d, e, x, y, z, are as follows:
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No. of voters Preference ordering

a>b>c>x>y>z>d>e
e>a>b>x>y>z>c>d
d>e>a>x>y>z>b>c
c>d>e>x>y>z>ax>bh
b=c>d>=x>y>z>e>a

e e e )

These preference orderings can be depicted as the following paired comparisons
matrix:

a b ¢ d e x y z
a - 4 3 2 1 3 3 3
b 1 - 4 3 2 3 3 3
¢c 2 1 - 4 3 3 3 3
d 3 2 1 - 4 3 3 3
e 4 3 2 1 - 3 3 3
x 2 2 2 2 2 - 5 5
y 2 2 2 2 2 0 - 5
z 2 2 2 2 2 0 0 -

The social preference ordering here hasatopcycle[a¢ > b > ¢ > d > e > a] >
X > y > Z, so according to Black’s procedure one must use Borda’s procedure in
order to determine which of the eight candidates will be deemed the winner. The
Borda counts of each of the candidates ¢ — ¢ is 19, that of candidate x is 20, and
those of candidates y and z are 15 and 10, respectively. So according to Black’s
procedure candidate x is elected because he has the highest Borda score. However,
since Borda’s procedure violates here Smith’s (1973) Condorcet principle, so does
Black’s procedure.!?

3.5.14 Demonstrating Paradoxes Afflicting Copeland’s Procedure

Except for being vulnerable to cyclical majorities and to strategic voting, Copeland’s
procedure is vulnerable to the no-show, twin, truncation, reinforcement and SCC
paradoxes.

As noted above in Sect. 3.2.1.4, Smith’s (1973) Condorcet principle states that if the set
of candidates can be partiticned into two disjoint subsets, A and B, such that each candidate
belonging to A can beat in paired comparisons each of the candidates belonging to B, then none
of the candidates belonging 10 B ought to be elected unless all candidates in A are elected. In
Example 3.5.13.3 each of candidates ¢ — e beats in paired comparisons each of the candidates
x, y, z. However, Borda's procedure (and Black’s} elects here candidate x although only a single
candidate must be elected - in violation of Smith’s Condorcet principle.
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Example 3.5.14.1 demonstrates the vulnerability of Copeland’s procedure to the
no-show, twin, and truncation paradoxes.

3.5.14.1 Example

Suppose there are 33 voters who must select one out of four candidates, a, b, c, o
d, and whose preference orderings among these four candidates are as follows:

No. of voters  Preference ordering

a>b>=c>d
b-c>ax>d
b>c>d»a
c>ax>ds>b
d>a>b>c
d>=b>a>c

SR T e

This preference list can be depicted as the following paired comparisons matrix:

a b ¢ d
a - 17 15 17
b 16 — 29 25
¢ 18 4 - 29
d 16 § 4 -

From this paired comparisons matrix we see that the social preference ordering has
atopcycle fa > b > ¢ > a] > d, so according to Copeland’s procedure there is a
tic between a, b and c.

Now suppose that, ceteris paribus, one of the two volers whose preference
ordering is b > ¢ > a > d decides not to participate in the election. This change
will result in the following paired comparisons matrix:

a b ¢ d
a - 17 15 16
b 15 - 28 24
c 17 4 - 28
d 16 8 4 -

From this matrix we can see that according to Copeland’s procedure each of
candidates b and ¢ gets two points (since each of these two candidates beats two
other candidates), while candidates ¢ and 4 get 1.5 and 0.5 points, respectively.
This result is certainly preferable from the point of view of the voter who decided
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not to participate, thus demonstrating the vulnerability of the Copeland’s procedure
to the no-show paradox.

The same example can also be used to demonstrate the vulnerability of
Copeland’s procedure to the twin paradox.

We have just seen that in the second part of this example one obtains a tie between
candidates b and c. So one could expect, presumably, that if a twin brother of the
voter with preference ordering b > ¢ > a > d joins the electorate (instead of
abstaining), the chances of candidate b to get elected would increase. But as we
have seen from the first part of this example when, ceteris paribus, two voters with
preference ordering b > ¢ > a > d exist in the electorate then the chances of
candidate b to get elected according to Copeland’s procedure decrease because in
this case one obtains a tie between b and two other candidates (¢ and c¢), whereas one
obtains a tiec between b and just one other candidate (¢) when only one voter with
preference ordering b > ¢ > a > d exists in the electorate — thus demonstrating
the vulnerability of Copeland’s procedure to the twin paradox.

To demonstrate the truncation paradox suppose that, ceteris paribus, in the first
part of Lhe above example the two voters with preference ordering b > ¢ > a > d
would decide to reveal only their top preference. In this case one would have
to assume that all the six possible preference orderings of these voters among
candidates a, ¢, d are equiprobable (or, equivalently, that they are indifferent
among them) and, consequently, one would obtain the following paired comparisons
matrix:

a b ¢ d
a - 17 16 16
b 16 - 29 25
c 17 4 - 28
d 17 8 5 -

From this paired comparisons matrix it is easy to see that according to Copeland’s
procedure there would be a tie between candidates b and ¢ (each obtaining two
points) — which is a preferable result from the point of view of the two b > ¢ >
a > d voters over a tie among candidates a, b, ¢ which was obtained, ceteris
paribus, when these voters revealed their entire preference ordering among all four
candidates.

Example 3.5.14.2 demonstrates the vulnerability of Copeland’s procedure to the
reinforcement paradox.

3.5.14.2 Example

Suppose there are two districts, I and II. In district I there are three voters whose
preference orderings among four candidates, a, b, ¢, and d, are as follows:
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No. of voters  Preference ordering

1 a>=b>c>d
1 bed»>c>a
1 d>c>a>h

and in district II there are two voters, one with preference ordering b > d > ¢ > a,
and the other with preference orderingd > b > ¢ > a.

According to Copeland’s procedure there is a tie between candidates b and d in
each of the two districts.

However, ceteris paribus, if the two districts are amalgamated into a single
district of five voters then one obtains the following preference list:

No. of voters  Preference ordering

a>b>c>d
b>d>c»a
d~b>c>a
d>c>a>b

— et D

This preference list can be depicted as the following paired comparisons matrix:

a b ¢ d
a - 2 1 1
b 3 - 4 3
¢c 4 1 - 1
d 4 2 4 -

From this paired comparisons matrix it is clear that candidate b is the Condorcet
winner and hence is elected according to Copeland’s procedure — contrary o the
reinforcement axiom.

Example 3.5.11.5 can be used to demonstrate the vulnerability of Copeland’s
procedure to the SCC paradox. According to that example there is a tie according
to Copeland’s procedure between candidates a and d. However if, ceteris paribus.
candidate b is eliminated then candidate ¢ becomes the Condorcet winner and is
elected by Copeland’s procedure — in violation of the SCC postulate.

3.5.15 Demonstrating the Paradoxes Afflicting Kemeny’s
Procedure

Except for being vulnerable to cyclical majorities and to strategic voting, Kemeny’s
procedure is vulnerable to the reinforcement, no-show, twin, truncation, and SCC
paradoxes.
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Example 3.5.15.1 demonstrates the vulnerability of Kemeny’s procedure to the
reinforcement paradox. It can also be used to demonstrate the vulnerability of
Dodgson’s procedure to this paradox.

3.5.15.1 Example

This example is due to Fishburn (1977, p. 484). Suppose there are two disiricts, |
and II.

In district 1 there are two voters whose preference orderings among nine
candidates are as follows: x > y =a > b >c >d > e > f > g.Here x is the
Condorcet winner and hence will be elected according to Kemeny’s procedure.

In district II there are seven voters whose preference orderings among the nine
candidates are as follows:

No. of voters Preference ordering

1 y>x>a>=b>c>d>e>f>g
yx>=gra=hb=c>d>e>f
y>x>f>gra>b>c>d>e
e>frgra=-b=c>d>y>x
d>e>f>gras=b>c>y>x
crd=e>f=gr-a>=b>y>x
x>=b>c>d>e>f>g>asy

e e L

These preference orderings can be depicted as the following paired comparisons
matrix:

a b ¢ d e f g x vy
a - 6 5 4 3 2 1 3 4
b 1 - 6 5 4 3 2 3 4
¢c 2 1 - 6 5 4 3 3 4
d 3 2 1 - 6 5 4 3 4
e 4 3 21 - 6 5 3 4
f 54 32 1 - 6 3 4
g 6 5 4 3 2 1 - 3 4
x 4 4 4 4 4 4 4 - 1

3 3 3 3 3 3

-
(s

i

The social preference ordering here is cyclical: x beats each of the seven candidates
a — g, whereas y beats x but is beaten by each of the seven candidates a — g. So
it is clear that according to Kemeny’s procedure the closest (non-cyclical) social
preference ordering here is one in which x is the top-ranked candidate. (Note that x
here has also the largest Borda score). So in district I1 too x is elected according to
Kemeny’s procedure.
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However, in the amalgamated district (consisting of districts I and II), we obtain
the following paired comparisons matrix:

a b ¢ d e f g x y
a - 8 7 6 5 4 3 3 4
b 1 - 8 7 6 5 4 3 4
c 2 1 - 8 7 6 5 3 4
d 3 2 1 - 8 7 6 3 4
e 4 3 2 1 - 8 7 3 4
f 5 4 3 2 1 - 8 3 4
g 6 5 4 3 2 1 - 3 4
x 6 6 6 6 6 6 6 - 3

y 5 55 55 5 6

According to this matrix y is the Condorcet winner and hence elected under
Kemeny’s procedure — thereby demonstrating its vulnerability to the reinforcement

paradox.
Example 3.5.15.2 demonstrates the vulnerability of Kemeny’s procedure to the

No-Show, Twin, and Truncation paradoxes.

h

3.5.15.2 Example

This example is due to Hannu Nurmi (private communication 27.2.2010 and
17.7.2011; this example appears also in section 10.5.7 in this volume). Suppose
there are 19 voters whose preference orderings among four candidates, a, b, c, d,
are as follows:

No. of voters  Preference ordering

5 d>b>c>a
4 d>-a>b>c
4 bs=c>a>d
3 a>d>c>b
3 a>d>b>c

Here a is the Condorcet winner and is therefore elected under Kemeny's procedure.

Now suppose that, ceteris paribus, the fourd > a > b > c voters decide not to
participate in the election. As a result we obtain that the social preference ordering
is eyclical [d > b > ¢ > a > d], so according to Kemeny’s procedure the most
likely (transitive) social preference ordering is d > b > ¢ > a because the sum
(57) associated with the pairwise comparisons of this social preference ordering is
highest. So according to Kemeny’s procedure d will now be elected — which the
four absentee d > a > b > ¢ voters certainly prefer to the election of a, thereby
demonstrating the vulnerability of Kemeny’s procedure to the No-Show paradox.

We also have here an instance of the twin paradox. To show Kemeny’s procedure
vulnerability to the Twin paradox start with the 16-voter profile:
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No. of voters  Preference ordering

5 d>=b>c»>a
1 d>a>b>c
4 b=c>a»>d
3 a>d>c>b
3 a>d»>b>c

Here the social preference ordering is cyclical [d > b > ¢ > a > d] and according
to Kemeny’s procedure the two most likely (transitive) social preference orderings
ared > b >c >=aanda > d > b > ¢ because the sum (61} associated with the
pairwise comparisons of these social preference orderings is highest. So according
to Kemeny's procedure there is a tie between a and d (to be broken randomly).

Now suppose that, ceteris paribus, one twin brother of the d > a > b > ¢
voter joins the electorate, thereby, presumably, sirengthening the position of 4 to be
elected under Kemeny'’s procedure. But if this twin joins the electorate then a will
be elected under Kemeny’s procedure — thus demonstrating its vulnerability to the
twin paradox. (Ceteris paribus, if one twin brother of the d > a > b > ¢ voter join
the electorate then the social preference ordering will still be cyclical but according
to Kemeny’s procedure the most likely transitive social preference ordering will
be topped by a, not by d, thereby demonstrating the vulnerability of Kemeny’s
procedure to the Twin paradox. We also have here an instance of the Truncation
paradox. To show Kemeny’s procedure vulnerability to this paradox suppose that the
four volers with preference ordering d > « > b > ¢ list only their top preference
(d). In this case one assumes that these voters are indifferent among a, b, and ¢, and
as a result the social preference ordering becomes cyclical (d > b > ¢ > a > d)
and the most likely transitive social preference ordering will be topped by d, not by
a, thereby demonstrating the vulnerability of Kemeny’s procedure to the Truncation
paradox).

Example 3.5.11.5 demonstrates the vulnerability of Kemeny’s procedure to the
SCC paradox. In that example candidate ¢ is elected according to Kemeny’s
procedure (because the “most likely” social preference ordering according to this
procedure is d > ¢ > b > a) butif, ceteris paribus, candidate b is eliminated then
candidate a becomes the Condorcet winner and is elected according to Kemeny's
procedure — in violation of the SCC postulate.

3.5.16 Demonstrating Paradoxes Afflicting Nanson’s Procedure

Except for being vulnerable to cyclical majorities and to strategic voting, Nanson’s
procedure may display non-monotonicity, as well as being vulnerable to the
Reinforcement, no-show, twin, truncation, and SCC paradoxes.

Example 3.5.16.1 demonstrates the vulnerability of Nanson’s procedure to lack
of monotonicity.

ot
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3.5.16.1 Example

This example is due to Nicolaus Tideman (private communication, 3.8.2011).
Suppose there are 36 voters who must elect one out of four candidates, a4, b, c, ord,
under Nanson’s procedure and whose preference orderings among these candidates,
as well as the resultant Borda scores of the four candidates, are as follows:

No. of voters  Preference ordering No. of voters  Preference ordering

1 a>b>=c>d 2 c-a>b>d
1 a>=b>d>c 1 c>a>=d>b
2 a>c>b>d 3 c>b>ax>d
2 a>c>d>bh 2 c>b>d»a
1 a-d>b»>c 1 c>d>a>b
2 a>d>=c>b 2 ¢c>d>b>a
2 b>-a>c>d 1 d>a>b>c
2 b=a>d>c 1 d=a>c>b
i b=c>a>d 0 d>=b>c>ua
1 br=c>d>ua 2 d>=b>=a>c
2 b>d»a>c 1 d-c>ax>b
1 b>d>c>a 2 d>=c>b>ua

The Borda scores of the candidates can be derived from the sum of the lines in the
following paired comparisons matrix:

a b ¢ d Sum
a - 16 19 20 55
b 20 - 15 20 55
c 17 21 - 20 S8
d 16 16 16 - 48
Total 216

The sum of Borda scores of all four candidates is 218,!® hence the average Borda
score is 34 (216:4). According to Nanson’s procedure one eliminates at the end of
every counting round those candidates whose Borda score is equal to or smaller than
the average score of all candidates participating in this round. Hence only candidate
d is eliminated after the first round. So in the second counting round we have:

I8Note that the sum of the Borda scores of all candidates can also be obtained by multiplying the
number of voters (36 in this example) by the number of paired comparisons among the candidates
(six in this example).
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No. of voters  Preference ordering

4 a>h>c
7 a»c»hb
8 b>a»c
3 b>c»>a
5 c=ax>b
9 c>b>a

which can be depicted as the following paired comparisons matrix cum Borda
scores:

a b ¢ Sum

a - 16 19 35
b 20 - 15 35
c 17 21 - 38
Total 108

Here the sum of Borda scores of all three candidates is 108, hence their average
Borda score is 36 (108:3). So according to Nanson’s procedure one eliminates at
the end of the second counting round both candidates ¢ and b - thus candidate ¢
becomes the ultimate winner,

Now suppose that, ceteris paribus, the voter whose preference ordering is a >
b > ¢ > d — who is not happy with the prospect that candidate ¢ may be elected - is
motivated to increase his support of candidate ¢ by changing his preference ordering
toa > ¢ > b > d. As aresult of this change the Borda scores of candidates b and
¢ change to 54 and 59, respectively, while the Borda scores of the remaining two
candidates, as well as the sum of all Borda scores and the average Borda score,
remain the same. So now both candidates » and d are eliminated after the first
counting round. In the second counting round one obtains that the {revised) Borda
scores of candidates a and ¢ are 19 and 17, respectively, so candidate @ becomes the
ultimate winner - thus demonstrating that Nanson’s procedure is susceptible to lack
of monotonicity.

Example 3.5.12.3, which demonstrates the vulnerability of Dodgson’s procedure
to the reinforcement paradox, can also be used to demonstrate the vulnerability of
Nanson'’s procedure to this paradox.

Example 3.5.16.2 demonstrates the vulnerability of Nanson's procedure to the
truncation paradox.

3.5.16.2 Example

Suppose there are 43 voters divided into six groups whose preference orderings
among four candidates a, b, ¢, d are as follows:
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Group No. of voters  Preference ordering
Gl % a»b>d>c

G2 5 a>c>b>d
G3 2 a>c>d>b
G4 5 b=as>c>d
G5 9 bs>d>c>ua
G6 13 c>b>-ux>d

Suppose further that under Nanson’s procedure with & candidates one assigns k
points to the top-ranked candidate, k — 1 points to the second-ranked candidate, .. .,
1 point to the kth ranked candidate, and 0 points to any non-ranked candidate.

Given the above preference orderings and the above-mentioned point assignment,
the number of points awarded to candidates a, b, ¢, and d in the first counting round,
are 114, 134, 110, and 72, respectively. Since the average number of points is 107.5
candidate d is deleted and a second counting round is conducted. The number of
points awarded to candidates a, b, ¢ in this round is 80, 93, and 85, respectively. As
the average number of points in this round is 86, both candidate ¢ and c are deleted
so candidate b is elected. However, if all voters belonging 1o groups G2 and Gé
(who are not very happy with the election of candidate b) decide not to rank (i.e.,
truncate) candidate b, then the number of points awarded to candidates a, b, ¢, and
d, are 109, 85, 92, and 72, respectively. As the average number of points in this case
is 89.5, candidates b, d are deleted so candidate ¢ is elected. This result is of course
preferred by the voters in groups G2 and G6 to the election of candidate b, thereby
demonstrating the susceptibility of Nanson’s procedure to the truncation paradox.

Example 3.5.16.3 demonstrates the vulnerability of Nanson’s procedure to the
no-show and twin paradoxes.

3.5.16.3 Example

This example is due to Hannu Nurmi (private communications, 25.5.2001 and
15.2.2010; this example appears also in section 10.5.2 in this volume). Suppose
there are 19 voters whose preference orderings among four candidates, a, b, ¢, d,
are as follows:

No. of voters  Preference ordering
5 a>b>d>c
b>c>d>u
c>ax>d=b
c>bs>ax»d
c>b>d>a

N o— O L

Here the Borda scores of candidates a, b, ¢, d are 28, 31, 37, 18, respectively,
and the average Borda score is 28.5. Therefore candidates ¢ and 4 are eliminated,
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whereupon candidate b is elected under Nanson’s procedure. But if, ceteris paribus,
one of the two last voters abstains then candidate ¢ — the abstainer’s most
preferred candidate - is elected under Nanson’s procedure, thus demonstrating the
yulnerability of this procedure to the no-show paradox.

We also have here an instance of the twin paradox: we have just seen that if there
is only one voter with preference ordering ¢ > b > d > a then, ceteris paribus,
candidate ¢ will be elected under Nanson’s procedure. But if he is joined by a twin
with the same preference ordering then b will be elected under Nanson’s procedure,
thus demonstrating the vulnerability of this procedure to the twin paradox.

Example 3.5.16.4 demonstrates the vulnerability of Nanson’s procedure to SCC.

3.5.16.4 Example
This example is due to Fishburn (1977, p. 486). Suppose there are 86 voters who

must elect one out of four candidates, a, b, ¢, or d, under Nanson’s procedure and
whose preference orderings are as follows:

No. of voters  Preference ordering

20 d>=a>bs>c
20 d>b>=c>ua
12 c>bh>d>a
28 a>c>hbx»d
3 b>c>u>d
3 c=b=ax>d

Accordingly, the number of Borda points awarded to candidates ¢, b, ¢, and d are
130, 127, 127, and 132, respectively — so candidates b, ¢ are deleted and in the
second counting round candidate d gets more Borda points (52) than candidate
(34) and hence d is elected.

Now suppose that, ceteris paribus, candidate ¢ drops out of the race. In this case
the number of Borda points awarded to candidates b, ¢ and « are 89, 89, and 80,
respectively, so there is a tie (to be broken randomly) between b and ¢ — in violation
of SCC.

3.5.17 Demonstrating Paradoxes Afflicting Schwartz’s Procedure

Except for being vulnerable to cyclical majorities and to strategic voting, Schwartz’s
procedure is vulnerable to the reinforcement, no-show, twin, truncation, and the
pareto-dominated candidate paradoxes.

Example 3.5.17.1 demonstrates the vulnerability of Schwartz’s procedure to the
reinforcement paradox.
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3.5.17.1 Example

This example is due to Fishburn (1977, p. 483). Suppose there are two districts, I
and IL In district I there are five voters, three of whom have preference ordering x >
y > w > z and the remaining two voters have preference orderingz > y > w > x.
Since x constitutes here the top preference of an absolute majority of the voters, x
will be elected in district I according to Schwartz’s procedure.

In district II there are four voters: one with preference ordering y > x > z >
w, one with preference ordering w > y > x > z, one with preference ordering
z> w > y > x, and one with preference ordering x > z > w > y. The social
preference ordering here is cyclical [z > w > y > x > z] so all four candidates
should be in the choice set in district II according to Schwartz’s procedure.

It would therefore be reasonable to assume that if, ceteris paribus, the two
districts are amalgamated into a single district of nine voters, then x should be in the
choice set of the amalgamated district according to Schwartz’s procedure. However,
in the amalgamated district y becomes the Condorcet winner and hence is the only
candidate in the choice set according to Schwartz’s procedure ~ thus demonsirating
its vulnerability to the Reinforcement paradox.

Example 3.5.17.2 demonstrates the vulnerability of Schwartz’s procedure to the
no-show and twin paradoxes. Unlike the demonstration of these paradoxes under
other procedures, in order to demonstrate the vulnerability of Schwartz’s procedure
to these paradoxes one must assume whether the voters are risk-neutral, risk-averse,
or risk-seeking. I shall assume that the voters are risk-neutral, i.e., when only the
voters’ ordinal (but not cardinal) preferences are known, I assume that a voter
whose ordinal preferences between three candidates, a, b,cisa > b » ¢ will
be indifferent between obtaining a lie between these three candidates which will be
broken randomly and the election of candidate b with certainty. Similarly, I assume
that if this voter’s ordinal preferences among four candidatesisb > ¢ > d > a he
would prefer the election of candidate ¢ with certainty than to obtain a tie among
all four candidates which will be broken randomly. Using different examples it is
of course possible to demonstrate these paradoxes also when one assumes that the
voters are risk-averse or risk-seeking.

3.5.17.2 Example

This example is due to Hannu Nurmi (private communication, 1.3.2010; this
example appears also in section 10.5.4 in this volume). Suppose there are 100 voters
whose preference orderings among four candidates, a, b, ¢, d, are as follows:

No. of voters  Preference ordering

23 a=b>d»c
28 b>c>d>a
49 c>d>a>b
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Here the social preference ordering is cyclical {¢ > b > ¢ > d > @] and according
to Schwartz’s procedure all four candidates belong to the choice set.

Now suppose that, ceteris paribus, four of the 28 b > ¢ > d > a voters decide
nol to participate in the election. In this case ¢ becomes the Condorcet winner —
which the absentee voiers certainly prefer over a tie among all candidates that will be
broken randomly - thereby demonstrating the vulnerability of Schwartz’s procedure
to the No-Show paradox.

We have here also a demonstration of the twin paradox. We just saw that, ceteris
paribus, if there are only 24 voters with preference ordering b > ¢ > d > a
then candidate c¢ is the Condorcet winner and is the only candidate belonging to
the choice set according to Schwartz’s procedure. But if, ceteris paribus, one adds
another four twins with preference ordering b > ¢ > d > a then Schwartz’s choice
set includes all candidates — which is a less preferable cutcome for these voters, thus
demonstrating the vulnerability of Schwartz’s procedure to the Twin paradox.

To demonstrate the vulnerability of Schwartz’s procedure to the Truncation
paradox we use again Example 3.5.13.1. In the first part of this example we
obtained that candidate d is the Condorcet winner and hence is the sole candidate
belonging to the Schwartz set. But, ceteris paribus, when the two voters whose
preference ordering is ¢ > b > a > d > c¢ decide not to reveal their last two
preferences (thereby assuming that the probability that they prefer d to ¢ is equal
to the probability they prefer ¢ to ), one obtains the following expected paired
comparisons matrix:

a b ¢ d e
a - 6 6 4 0
b 4 - 6 4 0
c 4 4 - 5 2
d 6 6 5 - 6
e 10 10 8 4 -

As can be seen from this matrix only candidates d, e¢ belong to the Schwartz
set (because each of these candidates either beats or ties with each of the other
three candidates) — which is a preferred outcome for the above-mentioned two
truncating voters over the certain election of candidate d — thereby demonstrating
the vulnerability of Schwartz’s procedure to the Truncation paradox.

This preference matrix can also be used to demonstrate the vulnerability of
Schwartz's procedure to the SCC paradox. We have just seen that according to
this preference matrix only candidates d, e belong to the Schwartz set. However,
if ceteris paribus, candidate ¢ is eliminaied (by deleting the row ¢ and column ¢
from this matrix) then candidate d becomes the Condorcet winner and is elected by
Schwartz’s procedure — in violation of the SCC postulate.

Example 3.5.17.3 demonstrates the vulnerability of Schwartz’s procedure to the
pareto-dominated candidate paradox.
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3.5.17.3 Example

This example is due to Fishburn (1973, p. 89; 1977, p. 478). Suppose there are three
voters whose preference orderings among four candidates, a, b, ¢, d are as follows:

No. of voters  Preference ordering

1 a>=bs>c>d
1 d>=a>bs>c¢
1 c=ds>as>bh

Here the social preference ordering is cyclical (a > b > ¢ > d > a) and according
to Schwartz’s procedure all four candidates belong to the choice set — this despite
the fact that candidate b is dominated by a (because all voters prefer @ to b) — thus
demonstrating the vulnerability of this procedure to the pareto-dominated candidate
paradox.

3.5.18 Demonstrating Paradoxes Afflicting Young’s Procedure

Except for being vulnerable to cyclical majorities and to strategic voting, Young’s
procedure is vulnerable to the Condorcet loser, absolute loser, reinforcement, no-
show, twin, truncation, preference inversion, and SCC paradoxes.

Example 3.5.11.1 can be used to demonstrate the vulnerability of Young’s
procedure to electing not only a Condorcet loser but also an Absolute Loser. In that
example candidate d is an absolute loser (and hence also a Condorcet loser), but
under Young’s procedure ¢ will be elected because for ¢ to become a Condorcet
winner only two voters must be removed from the 11-voter electorate (any two
voters whose last preference is d), whereas for each of the other three candidates
more than two voters must be removed in order for them to become a Condorcet
winner.

Example 3.5.11.1 can also be used to demonstrate the vulnerability of Young’s
procedure to the preference inversion paradox because, as we have already seen, if
all voters in Example 3.5.11.1 invert their preference orderings then d becomes an
Absolute Winner and hence is elected under Young’s procedure.

Example 3.5.12.3 can be used, mutatis mutandis, to demonstrate the vulnerability
of Young’s procedure to the reinforcement paradox. In that example candidate x is
a Condorcet winner in district I and hence is elected in this district according to
Young’s procedure too. To become the Condorcet winner in district II only five
voters must be removed (any five voters who prefer y to x), whereas for any
of the other candidates to become a Condorcet winner in district II more than
five voters must be removed. So according to Young’s procedure candidate x is
elected also in district II. But, as was demonstrated in Example 3.5.12.3, in the
amalgamated district with 19 voters candidate y becomes the Condorcet winner and
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is therefore elected also according to Young's procedure — thereby demonstrating its
vulnerability to the reinforcement paradox.

Example 3.5.18.1 demonstrates the vulnerability of Youngs procedure to the no-
show, twin, truncation, and SCC paradoxes.

3.5.18.1 Example

This example is due to Hannu Nurmi (private communication 22.2.2010). Suppose
there are 39 voters whose preference orderings among five candidates, a, b, ¢, d, ¢,
are as follows:

No. of voters  Preference ordering

11 b>a>d>e»>c
10 e>~c>b>d>u
1 a>c>ds>b>e
e>c>d>b>ua
e>ds>c>b>a
c>b>as>d»>e
d>c>b>a>e
a>b>d>e>c

_——= RN ND

These preference orderings can be depicted as the following paired comparisons
matrix:

a b ¢ d e

a - 11 22 24 25
b 28 - 12 24 25
c 17 27 - 24 13
d 15 15 15 - 25
e 14 14 26 14 -

The social preference ordering here is cyclical (¢ > b > a > d > ¢ > ¢). The
minimal number of voters one must remove in order for any of the five candidates
to become a Condorcet winner is 12 (the 10 voters whose top preference is ¢ and
the two voters whose top preference is ¢) in order for ¢ to become the Condorcet
winner. So ¢ is elected according to Young’s procedure given this profile.

Now suppose that, ceteris paribus, 10 new voters whose preference ordering is
e > d > a > b > c join the electorate — thus presumably strengthening e's
position. However, in this case we obtain the following paired comparisons matrix:
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a b ¢ d e

a - 21 32 24 25
b 28 - 22 24 25
c 17 27 - 24 13
d 25 25 25 - 25
e

24 24 36 24 -

which shows that candidate d is the Condorcet winner, hence the 10 added voters
are better off abstaining — thus demonstrating the vulnerability of Young’s procedure
to the No-Show paradox.'? Obviously twins are not always welcome here.

However, if the 10 added voters reveal only their top preference (g), then we
obtain the following paired comparisons matrix:

a b ¢ d e

a - 16 27 290 25
b 33 - 17 29 25
c 22 32 - 29 13
d 20 20 20 - 25
e

24 24 36 24 -

Here candidate ewill be elecied according to Young’s procedure because for ¢ to
become the Condorcet winner in this case only two voters must be removed (any
two voters whose bottom preference is ¢), whereas for any of the other candidates
to become a Condorcet winner more than two voters must be removed — thus
demonstrating that Young’s procedure is vulnerable to the truncation paradox.

To demonstrate the vulnerability of Young’s procedure to SCC let us look again
at the paired comparison matrix of the 39 voters at the beginning of this example.
We saw that given this matrix candidate e is elected under Young’s procedure. Now
suppose that, ceteris paribus, candidate b decides to withdraw from the race. Butif,
as a resull, we cross out row b and column b in the paired comparison matrix, we
sec that candidate ¢ becomes the Condorcet winner and hence elected by Young’s
procedure — thereby demonstrating its vulnerability to SCC.
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19The added 10 voters also demonstrate that Young's procedure violates what Pérez (19935, p. 143)
has called the Monotonicity property in face of new voters. This property requires that if candidate
x is chosen in a given situation and then, ceferis paribus, a new voter is added whose top preference
is x, then: (1) x must remain chosen for Weak Monotonicity to be satisfied, and (2) x must remain
chosen and no one not chosen before should be chosen now in order for Monotonicity 1o be
satisfied,
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