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In most textbooks, the Lorentz transformation is derived from the two postulates: the
equivalence of all inertial reference frames and the invariance of the speed of light. However,
the most general transformation of space and time coordinates can be derived using only the
equivalence of all inertial reference frames and the symmetries of space and time. The general
transformation depends on one free parameter with the dimensionality of speed, which can
be then identified with the speed of light c. This derivation uses the group property of the
Lorentz transformations, which means that a combination of two Lorentz transformations
also belongs to the class Lorentz transformations.

The derivation can be compactly written in matrix form. However, for those not familiar
with matrix notation, I also write it without matrices.

1) Let us consider two inertial reference frames O and O′. The reference frame O′ moves
relative to O with velocity v in along the x axis. We know that the coordinates y and z
perpendicular to the velocity are the same in both reference frames: y = y′ and z = z′. So,
it is sufficient to consider only transformation of the coordinates x and t from the reference
frame O to x′ = fx(x, t) and t′ = ft(x, t) in the reference frame O′.

From translational symmetry of space and time, we conclude that the functions fx(x, t)
and ft(x, t) must be linear functions. Indeed, the relative distances between two events in
one reference frame must depend only on the relative distances in another frame:

x′1 − x′2 = fx(x1 − x2, t1 − t2), t′1 − t′2 = ft(x1 − x2, t1 − t2). (1)

Because Eq. (1) must be valid for any two events, the functions fx(x, t) and ft(x, t) must be
linear functions. Thus

x′ = Ax+Bt, (2)

t′ = Cx+Dt, (3)

where A, B, C, and D are some coefficients that depend on v. In matrix form, Eqs. (2) and
(3) are written as (

x′

t′

)
=

(
A B
C D

)(
x
t

)
(4)

with four unknown functions A, B, C, and D of v.
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2) The origin of the reference frame O′ has the coordinate x′ = 0 and moves with velocity
v relative to the reference frame O, so that x = vt. Substituting these values into Eq. (2),
we find B = −vA. Thus, Eq. (2) has the form

x′ = A(x− vt), (5)

so we need to find only three unknown functions A, C, and D of v.

3) The origin of the reference frame O has the coordinate x = 0 and moves with velocity
−v relative to the reference frame O′, so that x′ = −vt′. Substituting these values in Eqs.
(2) and (3), we find D = A. Thus, Eq. (3) has the form

t′ = Cx+ At = A(Fx+ t), (6)

where we introduced the new variable F = C/A.
Let us change to the more common notation A = γ. Then Eqs. (5) and (6) have the form

x′ = γ (x− vt), (7)

t′ = γ (Fx+ t), (8)

or in the matrix form (
x′

t′

)
= γ

(
1 −v
F 1

)(
x
t

)
, (9)

Now we need to find only two unknown functions γv and Fv of v.

4) A combination of two Lorentz transformations also must be a Lorentz transformation.
Let us consider a reference frame O′ moving relative to O with velocity v1 and a reference
frame O′′ moving relative to O′ with velocity v2. Then

x′′ = γv2 (x′ − v2t′),
t′′ = γv2 (Fv2x

′ + t′),
x′ = γv1 (x− v1t),
t′ = γv1 (Fv1x+ t),

(10)

or in the matrix form(
x′′

t′′

)
= γv2

(
1 −vv2
Fv2 1

)(
x′

t′

)
,

(
x′

t′

)
= γv1

(
1 −vv1
Fv1 1

)(
x
t

)
. (11)

Substituting x′ and t′ from the second Eq. (35) into the first Eq. (35), we find

x′′ = γv2 γv1 [(1− Fv1v2)x− (v1 + v2)t)],
t′′ = γv2 γv1 [(Fv1 + Fv2)x+ (1− Fv2v1)t],

(12)

or in the matrix form(
x′′

t′′

)
= γv2 γv1

(
1 −vv2
Fv2 1

)(
1 −vv1
Fv1 1

)(
x
t

)
= γv2 γv1

(
1− Fv1v2 −v1 − v2
Fv1 + Fv2 1− Fv2v1

)(
x
t

)
.

(13)
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For a general Lorentz transformation, the coefficients in front of x in Eq. (7) and in front of
t in Eq. (8) are equal, i.e. the diagonal matrix elements in Eq. (9) are equal. Eqs. (12) and
(13) must also satisfy this requirement:

1− Fv1v2 = 1− Fv2v1 ⇒ v2
Fv2

=
v1
Fv1

. (14)

In the second Eq. (14), the left-land side depends only on v2, and the right-hand side only
on v1. This equation can be satisfied only if the ratio v/Fv is a constant a independent of
velocity v, i.e.

Fv = v/a, (15)

Substituting Eq. (15) into Eqs. (7) and (8), as well as (9), we find

x′ = γv (x− vt), t′ = γv (xv/a+ t), (16)

or in the matrix form (
x′

t′

)
= γv

(
1 −v
v/a 1

)(
x
t

)
. (17)

Now we need to find only one unknown function γv, whereas the coefficient a is a fundamen-
tal constant independent on v.

5) Let us make the Lorentz transformation from the reference frame O to O′ and then
from O′ back to O. The first transformation is performed with velocity v, and the second
transformation with velocity −v. The equations are similar to Eqs. (35) and (11):

x = γ−v (x′ + vt′),
t = γ−v (−x′v/a+ t′),

x′ = γv (x− vt),
t′ = γv (xv/a+ t),

(18)

or in the matrix form(
x
t

)
= γ−v

(
1 v
−v/a 1

)(
x′

t′

)
,

(
x′

t′

)
= γv

(
1 −v
v/a 1

)(
x
t

)
. (19)

Substituting x′ and t′ from the first equation (18) into the second one, we find

x = γ−v γv (1 + v2/a)x, t = γ−v γv (1 + v2/a) t, (20)

or in the matrix form(
x
t

)
= γ−v γv

(
1 v
−v/a 1

)(
1 −v
v/a 1

)(
x
t

)
= γ−v γv

(
1 + v2/a 0

0 1 + v2/a

)(
x
t

)
.

(21)
Eqs. (20) and (21) must be valid for any x and t, so

γ−v γv =
1

1 + v2/a
. (22)
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Because of the space symmetry, the function γv must depend only on the absolute value of
velocity v, but not on its direction, so γ−v = γv. Thus we find

γv =
1√

1 + v2/a
. (23)

6) Substituting Eq. (23) into Eqs. (16) and (17), we find the final expressions for the
transformation

x′ =
x− vt√
1 + v2/a

, t′ =
xv/a+ t√
1 + v2/a

, (24)

or in the matrix form (
x′

t′

)
=

1√
1 + v2/a

(
1 −v
v/a 1

)(
x
t

)
. (25)

Eqs. (24) and (25) have one fundamental parameter a, which has the dimensionality of
velocity squared.

If a < 0, we can write it as
a = −c2. (26)

Then Eqs. (24) and (25) become the standard Lorentz transformation:

x′ =
x− vt√
1− v2/c2

, t′ =
−xv/c2 + t√

1− v2/c2
, (27)

(
x′

t′

)
=

1√
1− v2/c2

(
1 −v

−v/c2 1

)(
x
t

)
. (28)

It is easy to check from Eq. (27) that, if a particle moves with velocity c in one reference
frame, it also moves with velocity c in any other reference frame, i.e. if x = ct then x′ =
ct′. Thus the parameter c is the invariant speed. Knowing about the Maxwell equations
and electromagnetic waves, we can identify this parameter with the speed of light. It is
straightforward to check that the Lorentz transformation (27) and (28) preserves the space-
time interval

(ct′)2 − (x′)2 = (ct)2 − x2, (29)

so it has the Minkowski metric.
If a =∞, then Eqs. (24) and (25) produce the non-relativistic Galileo transformation:

x′ = x− vt, t′ = t,

(
x′

t′

)
=

(
1 −v
0 1

)(
x
t

)
. (30)

If a > 0, we can write it as a = σ2. Then Eqs. (24) and (25) describe a Euclidean
space-time and preserve the space-time distance: (x′)2 + (σt′)2 = x2 + (σt)2.
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The Lorentz transformation (28) can be written more symmetrically as(
x′

ct′

)
=

1√
1− v2/c2

(
1 −v/c
−v/c 1

)(
x
ct

)
. (31)

Instead of velocity v, let us introduce a dimensionless variable α, called rapidity and defined
as

tanhα = v/c, (32)

where tanh is the hyperbolic tangent. Then Eq. (31) acquires the following form:(
x′

ct′

)
=

(
coshα − sinhα
− sinhα coshα

)(
x
ct

)
. (33)

Let us consider a combination of two consequtive Lorentz transformations (boosts) with
velocities v1 and v2, as described in the first part. The rapidity α of the combined boost has
a simple relation to the rapidities α1 and α2 of each boost:

α = α1 + α2. (34)

Indeed, Eq. (34) represents the relativistic law of adding velocities

tanhα =
tanhα1 + tanhα2

1 + tanhα1 tanhα2

⇒ v =
v1 + v2

1 + v1v2/c2
. (35)

Let us denote the 2×2 matrix in Eq. (33) as M(α). Then, the combination of two boosts
has the simple matrix form

M(α1 + α2) = M(α2)M(α1). (36)

We see that the Lorentz transformations form a group, similar to the group of rotations,
with the rapidity α being the (imaginary) rotation angle.
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