Questions for the Final Exam

The final exam is on Wed, Dec 18, 8:00 AM - 10:00 AM in Skinner 1115. You will have to answer questions $1 \& 11$. For the remaining questions, I will select 3 of the 5 point questions and 3 of the 15 point questions. You can think about the answers to these. questions for the next week, but you must write the answers during the exam period (you will not be allowed to use any notes). Good luck!

1. (20 points) A question involving using epistemic models to describe the change in knowledge in an social interactive situation.
2. In this problem we consider a possible definition of common belief, analogous to the definition of common knowledge. Suppose there are two agents and a belief model $\left\langle W,\left\{R_{1}, R_{2}\right\}, V\right\rangle$ where R_{1} and R_{2} are serial, transitive and Euclidean relations. Let $R_{B}=\left(R_{1} \cup R_{2}\right)^{+}$, where R^{+}is the transitive closure of R (the smallest transitive relation containing R). Define the common belief operator C^{B} as follows:

$$
\mathcal{M}, w \models C^{B} \varphi \text { iff for each } v \in W \text {, if } w R_{B} v \text { then } \mathcal{M}, v \models \varphi
$$

(a) (5 points) Provide a KD45 model $\mathcal{M}=\left\langle W,\left\{R_{1}, R_{2}\right\}, V\right\rangle$ and a state $w \in W$ where $\mathcal{M}, w \models B_{1}\left(C^{B} p\right)$ but $\mathcal{M}, w \models \neg C^{B} p$ (i.e., a state where agent 1 believes that p is commonly believed, but p is, in fact, not commonly believed).
(b) (5 points) Provide an example that shows that negative introspection for common belief $\left(\neg C^{B} \varphi \rightarrow C^{B} \neg C^{B} \varphi\right)$ is not valid
3. (15 points) For a Bayesian model with a common prior $\left\langle W,\left\{\sim_{i}\right\}_{i \in \mathcal{A}}, \pi\right\rangle$, prove that for each $i \in \mathcal{A}, \pi\left(E \mid B_{i}^{p}(E)\right) \geq p$.
4. (15 points) Explain why Aumann's original agreeing to disagree theorem follows from Samet's generalized agreeing to disagree theorem (see slide 21 of the lecture "Common Knowledge, Belief and Agreeing to Disagree"). Hint: fix an event $E \subseteq W$ and for each agent i, let the decision function \mathbf{d}_{i} be defined as follows: $\mathbf{d}_{i}(w)=\pi\left(E \mid[w]_{i}\right)$ (the posterior probability of E for agent i at state w). Prove that \mathbf{d} satisfies the ISTP.
5. (15 points) We have argued that $K_{i} \varphi \rightarrow K_{j} \varphi$ is valid on a frame $\left\langle W,\left\{R_{i}\right\}_{i \in \mathcal{A}}\right\rangle$ iff for each $i, j \in \mathcal{A}, R_{j} \subseteq R_{i}$. Find a property on frames $\left\langle W,\left\{R_{i}\right\}_{i \in \mathcal{A}}\right\rangle$ that guarantees that $K_{i} \varphi \rightarrow K_{i} K_{j} \varphi$ is valid.
6. Recall that an epistemic-plausibility model is a tuple

$$
\mathcal{M}=\left\langle W,\left\{\sim_{i}\right\}_{i \in \mathcal{A}},\left\{\preceq_{i}\right\}_{i \in \mathcal{A}}, V\right\rangle
$$

where W is a non-empty set of states, for each $i \in \mathcal{A}, \sim_{i}$ is an equivalence relation on W, for each $i \in \mathcal{A}, \preceq_{i}$ is reflexive, transitive, and well-founded (every subset $X \subseteq W$ has a \preceq-minimal element), and $V: A t \rightarrow \wp(W)$ is a valuation function. In addition, the following two properties are satisfied:
(a) plausibility implies possibility: if $w \preceq_{i} v$ then $w \sim_{i} v$.
(b) locally-connected: if $w \sim_{i} v$ then either $w \preceq_{i} v$ or $v \preceq_{i} w$.

Let $\mathcal{L}_{K B}$ be the modal language defined by the following grammar:

$$
\varphi:=p|\neg \varphi| \varphi \wedge \psi\left|K_{i} \varphi\right| B^{\varphi} \psi\left|\left[\preceq_{i}\right] \varphi\right| B^{s} \varphi
$$

with $p \in$ At. Recall that $\operatorname{Min}_{\preceq_{i}}(X)=\left\{v \in X \mid v \preceq_{i} w\right.$ for all $\left.w \in X\right\}$ (which is always non-empty since \preceq_{i} is well-founded). Truth for the modal operators is defined as follows:

- $\mathcal{M}, w \models K_{i} \varphi$ iff for all $v \in W$, if $w \sim_{i} v$ then $\mathcal{M}, v \models \varphi$
- $\mathcal{M}, w \models B_{i}^{\varphi} \psi$ iff for all $v \in \operatorname{Min}_{\preceq_{i}}\left(\llbracket \varphi \rrbracket_{\mathcal{M}} \cap[w]_{i}\right), \mathcal{M}, v \models \psi$
- $\mathcal{M}, w \models\left[\preceq_{i}\right] \varphi$ iff for all $v \in W$, if $v \preceq_{i} w$ then $\mathcal{M}, v \models \varphi$
- $\mathcal{M}, w \models B^{s} \varphi$ iff $\llbracket \varphi \rrbracket_{\mathcal{M}} \cap[w]_{i} \neq \emptyset$ and $\llbracket \varphi \rrbracket_{\mathcal{M}} \preceq_{i} \llbracket \neg \varphi \rrbracket_{\mathcal{M}}$
where $\llbracket \varphi \rrbracket_{\mathcal{M}}=\{w \mid \mathcal{M}, w \models \varphi\}$.
(a) Prove that the following two formulas are valid on every epistemic-plausibility model (recall that $L_{i} \varphi$ is defined to be $\neg K_{i} \neg \varphi$ and $B_{i} \varphi$ is $B^{\top} \varphi$):
- (15 points) $B_{i}^{s} \varphi \leftrightarrow B_{i} \varphi \wedge K_{i}\left(\varphi \rightarrow\left[\preceq_{i}\right] \varphi\right)$
- (15 points) $\left(B^{\varphi} \alpha \wedge \neg B^{\varphi} \neg \beta\right) \rightarrow B^{\varphi \wedge \beta} \alpha$ is valid.

7. (5 points) What is the Ramsey test, and what did Peter Gärdnefors prove about the Ramsey test?
8. (5 points) Let $C_{G} \varphi$ be "common knowledge among group G that φ is true". Is $C_{G_{1} \cup G_{2}} \varphi \rightarrow C_{G_{1}} \varphi \wedge C_{G_{2}} \varphi$ valid? Is $C_{G_{1}} \varphi \wedge C_{G_{2}} \varphi \rightarrow C_{G_{1} \cup G_{2}} \varphi$ valid?
9. (5 points) State the contraction principle (explain what the principle says) and discuss one of Hansson's counterexamples.
10. (15 points) Given a probability measure P defined on a σ-algebra Σ. Given the definition of a P-stable ${ }^{r}$ set. Prove that for all $X \in \Sigma$ with X non-empty and P-stable ${ }^{r}$: If $P(X)<1$, then there is no non-empty $Y \subseteq X$ with $Y \in \Sigma$ and $P(Y)=0$.
11. (20 points) Choose one of the following paradoxes, explain the paradox and briefly explain a proposed "solution": Surprise Examination Paradox, Fitch's Paradox, AbsentMinded Driver Problem, Brandenburger-Keisler Paradox, or the Preface Paradox. Your explanation should not be more than 3-5 paragraphs.
