Reasoning about Knowledge and Beliefs
 Lecture 20

Eric Pacuit

University of Maryland, College Park
pacuit.org
epacuit@umd.edu

December 4, 2013
V. Goranko and EP. Temporal Aspects of the Dynamics of Knowledge. 2013.

Epistemic Temporal Logic

R. Parikh and R. Ramanujam. A Knowledge Based Semantics of Messages. Journal of Logic, Language and Information, 12: 453 - 467, 1985, 2003.

FHMV. Reasoning about Knowledge. MIT Press, 1995.

The 'Playground'

The 'Playground'

The 'Playground'

Formal Languages

- $P \varphi$ (φ is true sometime in the past),
- $F \varphi(\varphi$ is true sometime in the future),
- $Y \varphi$ (φ is true at the previous moment),
- $N \varphi$ (φ is true at the next moment),
- $N_{e} \varphi$ (φ is true after event e)
- $K_{i} \varphi$ (agent i knows φ) and
- $C_{B} \varphi$ (the group $B \subseteq \mathcal{A}$ commonly knows φ).

History-based Models

An ETL model is a structure $\left\langle\mathcal{H},\left\{\sim_{i}\right\}_{i \in \mathcal{A}}, V\right\rangle$ where $\left\langle\mathcal{H},\left\{\sim_{i}\right\}_{i \in \mathcal{A}}\right\rangle$ is an ETL frame and
$V: \operatorname{At} \rightarrow 2^{\text {finite }(\mathcal{H})}$ is a valuation function.

Formulas are interpreted at pairs H, t :

$$
H, t \models \varphi
$$

Truth in a Model

- $H, t \vDash P \varphi$ iff there exists $t^{\prime} \leq t$ such that $H, t^{\prime} \models \varphi$
- $H, t \equiv F \varphi$ iff there exists $t^{\prime} \geq t$ such that $H, t^{\prime} \models \varphi$
- $H, t=N \varphi$ iff $H, t+1 \models \varphi$
- $H, t \models Y \varphi$ iff $t>1$ and $H, t-1 \models \varphi$
- $H, t \equiv K_{i} \varphi$ iff for each $H^{\prime} \in \mathcal{H}$ and $m \geq 0$ if $H_{t} \sim_{i} H_{m}^{\prime}$ then $H^{\prime}, m \vDash \varphi$
- $H, t \mid=C \varphi$ iff for each $H^{\prime} \in \mathcal{H}$ and $m \geq 0$ if $H_{t} \sim_{*} H_{m}^{\prime}$ then $H^{\prime}, m \|$.
where \sim_{*} is the reflexive transitive closure of the union of the \sim_{i}.

Truth in a Model

- $H, t \vDash P \varphi$ iff there exists $t^{\prime} \leq t$ such that $H, t^{\prime} \models \varphi$
- $H, t \equiv F \varphi$ iff there exists $t^{\prime} \geq t$ such that $H, t^{\prime} \models \varphi$
- $H, t=N \varphi$ iff $H, t+1 \models \varphi$
- $H, t \models Y \varphi$ iff $t>1$ and $H, t-1 \models \varphi$
- $H, t \equiv K_{i} \varphi$ iff for each $H^{\prime} \in \mathcal{H}$ and $m \geq 0$ if $H_{t} \sim_{i} H_{m}^{\prime}$ then $H^{\prime}, m \vDash \varphi$
- $H, t \mid=C \varphi$ iff for each $H^{\prime} \in \mathcal{H}$ and $m \geq 0$ if $H_{t} \sim_{*} H_{m}^{\prime}$ then $H^{\prime}, m \|$.
where \sim_{*} is the reflexive transitive closure of the union of the \sim_{i}.

An Example

Ann would like Bob to attend her talk; however, she only wants Bob to attend if he is interested in the subject of her talk, not because he is just being polite.

An Example

Ann would like Bob to attend her talk; however, she only wants Bob to attend if he is interested in the subject of her talk, not because he is just being polite.

There is a very simple procedure to solve Ann's problem: have a (trusted) friend tell Bob the time and subject of her talk.

An Example

Ann would like Bob to attend her talk; however, she only wants Bob to attend if he is interested in the subject of her talk, not because he is just being polite.

There is a very simple procedure to solve Ann's problem: have a (trusted) friend tell Bob the time and subject of her talk.

Is this procedure correct?

$H, 3 \models \varphi$

Bob's uncertainty: $H, 3 \models \neg K_{B} P_{2 P M}$

Bob's uncertainty + 'Protocol information': H, $3=K_{B} P_{2 P M}$

Bob's uncertainty + 'Protocol information':
$H, 3 \vDash \neg K_{B} K_{A} K_{B} P_{2 P M}$

Bob's uncertainty + 'Protocol information':
$H, 3 \models \neg K_{B} K_{A} K_{B} P_{2 P M}$

Bob's uncertainty + 'Protocol information':
$H, 3 \models \neg K_{B} K_{A} K_{B} P_{2 P M}$

Bob's uncertainty + 'Protocol information':
$H, 3 \models \neg K_{B} K_{A} K_{B} P_{2 P M}$

Parameters of the Logical Framework

Parameters of the Logical Framework

1. Expressivity of the formal language. Does the language include a common knowledge operator? A future operator? Both?

Parameters of the Logical Framework

1. Expressivity of the formal language. Does the language include a common knowledge operator? A future operator? Both?
2. Structural conditions on the underlying event structure. Do we restrict to protocol frames (finitely branching trees)? Finitely branching forests? Or, arbitrary ETL frames?

Parameters of the Logical Framework

1. Expressivity of the formal language. Does the language include a common knowledge operator? A future operator? Both?
2. Structural conditions on the underlying event structure. Do we restrict to protocol frames (finitely branching trees)? Finitely branching forests? Or, arbitrary ETL frames?
3. Conditions on the reasoning abilities of the agents. Do the agents satisfy perfect recall? No miracles? Do they agents' know what time it is?

Agent Oriented Properties:

- No Miracles: For all finite histories $H, H^{\prime} \in \mathcal{H}$ and events $e \in \Sigma$ such that $H e \in \mathcal{H}$ and $H^{\prime} e \in \mathcal{H}$, if $H \sim_{i} H^{\prime}$ then $H e \sim_{i} H^{\prime} e$.
- Perfect Recall: For all finite histories $H, H^{\prime} \in \mathcal{H}$ and events $e \in \Sigma$ such that $H e \in \mathcal{H}$ and $H^{\prime} e \in \mathcal{H}$, if $H e \sim_{i} H^{\prime} e$ then $H \sim_{i} H^{\prime}$.
- Synchronous: For all finite histories $H, H^{\prime} \in \mathcal{H}$, if $H \sim_{i} H^{\prime}$ then $\operatorname{len}(H)=\operatorname{len}\left(H^{\prime}\right)$.

Perfect Recall

Perfect Recall

Perfect Recall

No Miracles

No Miracles

No Miracles

Ideal Agents

Assume there are two agents
Theorem
The logic of ideal agents with respect to a language with common knowledge and future is highly undecidable (for example, by assuming perfect recall).
J. Halpern and M. Vardi.. The Complexity of Reasoning abut Knowledge and Time. J. Computer and Systems Sciences, 38, 1989.
J. van Benthem and EP. The Tree of Knowledge in Action. Proceedings of AiML, 2006.

Constrained Public Announcement

1. $A \rightarrow\langle A\rangle \top$ vs. $\langle A\rangle \top \rightarrow A$

Constrained Public Announcement

1. $A \rightarrow\langle A\rangle \top$ vs. $\langle A\rangle \top \rightarrow A$
2. $\langle A\rangle K_{i} P \leftrightarrow A \wedge K_{i}\langle A\rangle P$

Constrained Public Announcement

1. $A \rightarrow\langle A\rangle \top$ vs. $\langle A\rangle \top \rightarrow A$
2. $\langle A\rangle K_{i} P \leftrightarrow A \wedge K_{i}\langle A\rangle P$
3. $\langle A\rangle K_{i} P \leftrightarrow\langle A\rangle \top \wedge K_{i}(A \rightarrow\langle A\rangle P)$

Constrained Public Announcement

1. $A \rightarrow\langle A\rangle \top$ vs. $\langle A\rangle \top \rightarrow A$
2. $\langle A\rangle K_{i} P \leftrightarrow A \wedge K_{i}\langle A\rangle P$
3. $\langle A\rangle K_{i} P \leftrightarrow\langle A\rangle \top \wedge K_{i}(A \rightarrow\langle A\rangle P)$
4. $\langle A\rangle K_{i} P \leftrightarrow\langle A\rangle \top \wedge K_{i}(\langle A\rangle \top \rightarrow\langle A\rangle P)$
