Reasoning about Knowledge and Beliefs Lecture 20

Eric Pacuit

University of Maryland, College Park

pacuit.org epacuit@umd.edu

December 4, 2013

V. Goranko and EP. Temporal Aspects of the Dynamics of Knowledge. 2013.

Epistemic Temporal Logic

R. Parikh and R. Ramanujam. A Knowledge Based Semantics of Messages. Journal of Logic, Language and Information, 12: 453 – 467, 1985, 2003.

FHMV. Reasoning about Knowledge. MIT Press, 1995.

Formal Languages

- $P\varphi$ (φ is true *sometime* in the past),
- $F\varphi$ (φ is true *sometime* in the future),
- $Y\varphi$ (φ is true at *the* previous moment),
- $N\varphi$ (φ is true at *the* next moment),
- $N_e \varphi$ (φ is true after event e)
- $K_i \varphi$ (agent *i* knows φ) and
- $C_B \varphi$ (the group $B \subseteq \mathcal{A}$ commonly knows φ).

History-based Models

An ETL **model** is a structure $\langle \mathcal{H}, \{\sim_i\}_{i \in \mathcal{A}}, V \rangle$ where $\langle \mathcal{H}, \{\sim_i\}_{i \in \mathcal{A}} \rangle$ is an ETL frame and

 $V: \mathsf{At} \to 2^{\mathsf{finite}(\mathcal{H})}$ is a valuation function.

Formulas are interpreted at pairs H, t:

 $H,t\models\varphi$

Truth in a Model

- $H, t \models P\varphi$ iff there exists $t' \leq t$ such that $H, t' \models \varphi$
- $H, t \models F\varphi$ iff there exists $t' \ge t$ such that $H, t' \models \varphi$
- $\blacktriangleright H, t \models N\varphi \text{ iff } H, t + 1 \models \varphi$
- $H, t \models Y \varphi$ iff t > 1 and $H, t 1 \models \varphi$
- ▶ $H, t \models K_i \varphi$ iff for each $H' \in \mathcal{H}$ and $m \ge 0$ if $H_t \sim_i H'_m$ then $H', m \models \varphi$
- ▶ $H, t \models C\varphi$ iff for each $H' \in \mathcal{H}$ and $m \ge 0$ if $H_t \sim_* H'_m$ then $H', m \models \varphi$.

where \sim_* is the reflexive transitive closure of the union of the \sim_i .

Truth in a Model

- $H, t \models P\varphi$ iff there exists $t' \leq t$ such that $H, t' \models \varphi$
- $H, t \models F\varphi$ iff there exists $t' \ge t$ such that $H, t' \models \varphi$
- $\blacktriangleright H, t \models N\varphi \text{ iff } H, t + 1 \models \varphi$
- $H, t \models Y \varphi$ iff t > 1 and $H, t 1 \models \varphi$
- ► $H, t \models K_i \varphi$ iff for each $H' \in \mathcal{H}$ and $m \ge 0$ if $H_t \sim_i H'_m$ then $H', m \models \varphi$
- ▶ $H, t \models C\varphi$ iff for each $H' \in \mathcal{H}$ and $m \ge 0$ if $H_t \sim_* H'_m$ then $H', m \models \varphi$.

where \sim_* is the reflexive transitive closure of the union of the \sim_i .

An Example

Ann would like Bob to attend her talk; however, she only wants Bob to attend if he is interested in the subject of her talk, not because he is just being polite.

An Example

Ann would like Bob to attend her talk; however, she only wants Bob to attend if he is interested in the subject of her talk, not because he is just being polite.

There is a very simple procedure to solve Ann's problem: *have a* (*trusted*) friend tell Bob the time and subject of her talk.

An Example

Ann would like Bob to attend her talk; however, she only wants Bob to attend if he is interested in the subject of her talk, not because he is just being polite.

There is a very simple procedure to solve Ann's problem: *have a* (*trusted*) friend tell Bob the time and subject of her talk.

Is this procedure correct?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣へで

 $H, 3 \models \varphi$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣へで

Bob's uncertainty: $H, 3 \models \neg K_B P_{2PM}$

Bob's uncertainty + 'Protocol information': $H, 3 \models K_B P_{2PM}$

1. Expressivity of the formal language. Does the language include a common knowledge operator? A future operator? Both?

- 1. Expressivity of the formal language. Does the language include a common knowledge operator? A future operator? Both?
- Structural conditions on the underlying event structure. Do we restrict to protocol frames (finitely branching trees)? Finitely branching forests? Or, arbitrary ETL frames?

- 1. Expressivity of the formal language. Does the language include a common knowledge operator? A future operator? Both?
- Structural conditions on the underlying event structure. Do we restrict to protocol frames (finitely branching trees)? Finitely branching forests? Or, arbitrary ETL frames?
- 3. Conditions on the reasoning abilities of the agents. Do the agents satisfy perfect recall? No miracles? Do they agents' know what time it is?

Agent Oriented Properties:

- ▶ No Miracles: For all finite histories $H, H' \in \mathcal{H}$ and events $e \in \Sigma$ such that $He \in \mathcal{H}$ and $H'e \in \mathcal{H}$, if $H \sim_i H'$ then $He \sim_i H'e$.
- ▶ **Perfect Recall**: For all finite histories $H, H' \in \mathcal{H}$ and events $e \in \Sigma$ such that $He \in \mathcal{H}$ and $H'e \in \mathcal{H}$, if $He \sim_i H'e$ then $H \sim_i H'$.
- Synchronous: For all finite histories H, H' ∈ H, if H ~_i H' then len(H) = len(H').

Perfect Recall

Perfect Recall

Perfect Recall

No Miracles

No Miracles

No Miracles

Ideal Agents

Assume there are two agents

Theorem

The logic of ideal agents with respect to a language with common knowledge and future is highly undecidable (for example, by assuming perfect recall).

J. Halpern and M. Vardi.. *The Complexity of Reasoning abut Knowledge and Time. J. Computer and Systems Sciences*, 38, 1989.

J. van Benthem and EP. *The Tree of Knowledge in Action*. Proceedings of AiML, 2006.

1. $A \rightarrow \langle A \rangle \top$ vs. $\langle A \rangle \top \rightarrow A$

1.
$$A \rightarrow \langle A \rangle \top$$
 vs. $\langle A \rangle \top \rightarrow A$

2. $\langle A \rangle K_i P \leftrightarrow A \wedge K_i \langle A \rangle P$

1.
$$A \to \langle A \rangle \top$$
 vs. $\langle A \rangle \top \to A$

2. $\langle A \rangle K_i P \leftrightarrow A \wedge K_i \langle A \rangle P$

3.
$$\langle A \rangle K_i P \leftrightarrow \langle A \rangle \top \wedge K_i (A \rightarrow \langle A \rangle P)$$

1.
$$A \rightarrow \langle A \rangle \top$$
 vs. $\langle A \rangle \top \rightarrow A$

2.
$$\langle A \rangle K_i P \leftrightarrow A \wedge K_i \langle A \rangle P$$

3.
$$\langle A \rangle K_i P \leftrightarrow \langle A \rangle \top \wedge K_i (A \rightarrow \langle A \rangle P)$$

$$4. \ \langle A \rangle K_i P \leftrightarrow \langle A \rangle \top \land K_i (\langle A \rangle \top \rightarrow \langle A \rangle P)$$