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The Absent-Minded Driver

An individual is sitting late at night in a bar planning his midnight
trip home. In order to get home he has to take the highway and
get off at the second exit.

Turning at the first exit leads into a
disastrous area (payoff 0). Turning at the second exit yields the
highest reward (payoff 4). If he continues beyond the second exit,
he cannot go back and at the end of the highway he will find a
motel where he can spend the night (payoff 1).
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The Absent-Minded Driver

The driver is absentminded and is aware of this fact. At an
intersection, he cannot tell whether it is the first or the second
intersection and he cannot remember how many he has passed
(one can make the situation more realistic by referring to the 17th
intersection).

While sitting at the bar, all he can do is to decide
whether or not to exit at an intersection. (pg. 7)

M. Piccione and A. Rubinstein. On the Interpretation of Decision Problems with
Imperfect Recall. Games and Econ Behavior, 20, pgs. 3- 24, 1997.
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Planning stage: While planning his trip home at the bar, the
decision maker is faced with a choice between “Continue;
Continue” and “Exit”. Since he cannot distinguish between the two
intersections, he cannot plan to “Exit” at the second intersection
(he must plan the same behavior at both X and Y ). Since “Exit”
will lead to the worst outcome (with a payoff of 0), the optimal
strategy is “Continue; Continue” with a guaranteed payoff of 1.
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Action stage: When arriving at an intersection, the decision
maker is faced with a local choice of either “Exit” or “Continue”
(possibly followed by another decision). Now the decision maker
knows that since he committed to the plan of choosing “Continue”
at each intersection, it is possible that he is at the second
intersection. Indeed, the decision maker concludes that he is at the
first intersection with probability 1/2. But then, his expected
payoff for “Exit” is 2, which is greater than the payoff guaranteed
by following the strategy he previously committed to. Thus, he
chooses to “Exit”.
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“...the driver’s example has a paradoxical flavor due to the conflict
between two ways of reasoning at an intersection. The first
instructs the decision maker to follow his initial decision not to
exit, following an intuitive principle of rationality that unless new
information is received or there isa change in tastes, previous
decisions should not be changed. The second way of reasoning,
maximizing the expected payoff given the belief, suggests he
should deviate from his initial decision. ”

Reasoning about Knowledge and Beliefs 9/56



Planning-Optimal Decision

Let p be the probability of CONT.

THe planning-optimal decision is to find a p such that

(1− p) · 0 + p(1− p) · 4 + p2 · 1

is maximal.

The above equation is maximal when p = 2
3 . So, the

planning-optimal strategy is to CONT with probability 2
3 and EXIT

with probability 1
3
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Action Stage

1. The driver makes a decision at each intersection through
which he passes. Moreover, when at one intersection, he can
determine the action only there, and not at the other
intersection—where he isn’t.

2. Since he is in completely indistinguishable situations at the
two intersections, whatever reasoning obtains at one must
obtain also at the other, and he is aware of this.
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Let p be the probabilities of CONT at the current and at the
“other” intersections, respectively. Let α be the probability that
the decision maker is at the first intersection.

The expected payoff at the acton stage is:

H(p, q, α) = α[(1−p)·0+p(1−q)·4+pq·1]+(1−α)[(1−p)·4+p·1]

Piccione and Rubinstein maximize H(p, p, α) over p, holding α
fixed.

“This makes sense only if the driver controls the probabilities at
both intersections—a violation of the first observation. But even
if, by some magical process, the driver could control the probability
q at the other intersection, surely α depends on q, and cannot be
held fixed in the maximization!” (pg. 104)
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1. The optimal decision is the same at both intersections; call it
p∗

2. Therefore, at each intersection, the driver believes that p∗ is
chosen at the other intersection.

3. At each intersection, the driver optimizes his decision given
his beliefs. Therefore, choosing p at the current intersection
to be p∗ must be optimal given the belief that p∗ is chosen at
the other intersection.
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Let q be the behavior at the other intersection. the probability
that the current intersection is the first one is α = 1

1+q . Let

h(p, q) = H(p, q, 1
1+q ), item 3. implies that p∗ is action-optimal if

the maximum of h(p, p∗) over p is attained at p = p∗.

That is, p∗ is a fixed point of the mapping q 7→ arg maxp h(p, q)

Formally, (p∗, p∗) is a symmetric Nash equilibrium in the
symmetric game between “the driver at the current intersection
and the “the driver at the other intersection”.
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The planning-optimal decision—CONT with probability 2
3 —is also

action-optimal.

If q = 2
3 , then α = 3

5 .

Thus,

h(p,
2

3
) =

3

5
[(1− p) · 0 + p(

1

3
) · 4 + p · 2

3
· 1] +

2

5
[(1− p) · 4 + p · 1]

which equals 8
5 for all p. So, p = 2

3 maximizes it; thus p∗ = 2
3 .
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p∗ = 2
3 is the unique action-optional decision.

h(p, q) =
1

1 + q
[(1−p)·0+p(1−q)·4+pq·1]+

q

1 + q
[(1−p)·4+p·1]

=
(4− 6q)p + 4q

1 + q

Given q, the maximizing p therefore is: 0 for q > 2
3 , 1 for q < 2

3
and anything for q = 2

3 . So, the only fixed-point is p∗ = 2
3 .
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1. What decisions can be made? In particular, can a decision
maker decide about when to make a decision?

2. What tis the timing of decisions? Is there a planning stage or
are decisions made only at the time actions are executed?

3. Can a decision maker change his strategy along its execution?
And, if he does change his strategy, can he change it again?

4. Can a decision maker use random devices?
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The optimal strategy is f (x1) = S , f (x2) = B and f ({x3, x4}) = R
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At x1, f ′(x1) = B, f ′(x2) = S , f ′({x3, x4}) = L is best
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...if node x1 is reached, the agent should reconsider, and decide to
switch from f to f ′. If the agent is able to remember that he
switched strategies, then this is correct; the agent is indeed better
off (under any reasonable notion of “better off”) if he switches. ”

J. Halpern. On Ambiguities in the Interpretation of Game Tree. Games and
Economic Behavior, 1996.
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Temporal Aspects of the Dynamics of Knowledge
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Ingredients of a Logical Analysis of Rational Agency

⇒ informational attitudes (eg., knowledge, belief, certainty)

⇒ time, actions and ability

⇒ motivational attitudes (eg., preferences)

⇒ group notions (eg., common knowledge and coalitional ability)

⇒ normative attitudes (eg., obligations)
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Time

One of the most “successful” applications of modal logic is in the
“logic of time”.

Many variations

I discrete or continuous

I branching or linear

I point based or interval based

See, for example,

Antony Galton. Temporal Logic. Stanford Encyclopedia of Philosophy: http:

//plato.stanford.edu/entries/logic-temporal/.

I. Hodkinson and M. Reynolds. Temporal Logic. Handbook of Modal Logic,
2008.
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Models of Time

T = 〈T , <,V 〉 where

I T is a set of time points (or moments),

I < ⊆ T × T is the precedence relation: s < t means “time
point s precedes time point t (or s occurs earlier than t)” and

I V : At→ ℘(T ) is a valuation function (describing when the
atomic propositions are true).

< is typically assumed to be irreflexive and transitive (a strict
partial order).

Examples: 〈N, <〉, 〈Z, <〉, 〈Q, <〉, 〈R, <〉
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Other properties of <

I Linearity: for all s, t ∈ T , s < t or s = t of t < s

I Past-linear: for all s, x , y ∈ T , if x < s and y < s, then
either x < y or x = y or y < x

I Denseness for all s, t ∈ T , if s < t then there is a z ∈ T
such that s < z and z < t

I Discreteness: for all s, t ∈ T , if s < t then there is a z such
that (s < z and there is no u such that s < u and u < z)
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Priorean Temporal Logic

Lt be defined by the following grammar

p | ¬ϕ | ϕ ∧ ψ | Gϕ | Hϕ

where p ∈ At.

Gϕ: “ϕ is going to become true”

Hϕ: “ϕ has been true”

Fϕ := ¬G¬ϕ: “ϕ is true in the future”

Pϕ := ¬H¬ϕ: “ϕ was true some time in the past”
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M = 〈T , <,V 〉
I M, t |= p iff t ∈ V (p)

I M, t |= ¬ϕ iff M, t 6|= ϕ

I M, t |= ϕ ∧ ψ iff M, t |= ϕ and M, t |= ψ

I M, t |= Gϕ iff for all s ∈ T , if t < s then M, s |= ϕ

I M, t |= Hϕ iff for all s ∈ T , if s < t thenM, s |= ϕ

I M, t |= Fϕ iff there is s ∈ T such that t < s and M, s |= ϕ

I M, t |= Pϕ iff there is s ∈ T such that s < t and M, s |= ϕ
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Frame Correspondence

I H⊥ ∨ PH⊥ is valid

iff there is a starting point

I P> is valid iff there is no starting point

I G⊥ ∨ FG⊥ is valid iff there is an end point

I F> is valid iff there is no endpoint

I PFϕ→ (Pϕ ∨ ϕ ∨ Fϕ) is valid iff the future is not branching

I FPϕ→ (Fϕ ∨ ϕ ∨ Pϕ) is valid iff the past is non-branching

I Fϕ→ FFϕ is valid iff the flow of time is dense

I (F> ∧ ϕ ∧ Hϕ)→ FHϕ is valid iff the flow of time is discrete
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Basic Temporal Logic

All classical propositional tautologies

Distribution
G (ϕ→ ψ)→ (Gϕ→ Gψ)
G (ϕ→ ψ)→ (Gϕ→ Gψ)

Converse
ϕ→ GPϕ
ϕ→ HFϕ

Transitivity: Gϕ→ GGϕ

Modus Ponens: from ϕ and ϕ→ ψ infer ψ
Temporal Generalization: from ϕ infer Fϕ; from ϕ infer Gϕ

Theorem. The above logic is sound and complete with respect to
the class of all flows of time
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Logic of Linear Time

Theorem. The above logic with the linearity axioms is sound and
complete with respect to the class of all linear flows of time

I PFϕ→ (Pϕ ∨ ϕ ∨ Fϕ)

I FPϕ→ (Fϕ ∨ ϕ ∨ Pϕ)
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Other Languages: Since and Until

M, t |= ϕUψ iff M, s |= ψ for some s such that t < s and
M, u |= ϕ for all u with t < u < s

M, t |= ϕSψ iff M, s |= ψ for some s such that s < t and
M, u |= ϕ for all u with s < u < t

Theorem (Kamp). Over the class of linear, continuous orderings,
every temporal operator can be defined using the above modalities
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Branching Time

Each moment t ∈ T can be decided into the
Past(t) = {s ∈ T | s < t} and the Future(t) = {s ∈ T | t < s}
(“A-series”)

Typically, it is assumed that the past is linear, but the future may
be branching.

Fϕ: “it will be the case that ϕ”

ϕ will be the case “in the case in the actual course of events” or
“no matter what course of events”
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Branching Time Logics

A branch b in 〈T , <〉 is a maximal linearly ordered subset of T

s ∈ T is on a branch b of T provided s ∈ b (we also say “b is a
branch going through t”).

I M, t, b |= p iff t ∈ V (p)

I M, t, b |= ¬ϕ iff M, t, b 6|= ϕ

I M, t, b |= ϕ ∧ ψ iff M, t, b |= ϕ and M, t |= ψ

I M, t, b |= Gϕ iff for all s ∈ T , if s is on b and t < s then
M, s, b |= ϕ

I M, t, b |= Hϕ iff for all s ∈ T , if s is on b and s < t then
M, s, b |= ϕ

I M, t, b |= ∀ϕ iff M, s, c |= ϕ for all branches c through t
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Computational vs. Behavioral Structures

x = 1q0

x = 2q1 q0q0q0 q0q0q1 q0q1q0 q0q1q1

q0q0 q0q1

q0

...
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Temporal Logics

I Linear Time Temporal Logic: Reasoning about computation
paths:

Fϕ: ϕ is true some time in the future.

A. Pnuelli. A Temporal Logic of Programs. in Proc. 18th IEEE Symposium on
Foundations of Computer Science (1977).

I Branching Time Temporal Logic: Allows quantification over
paths:

∃Fϕ: there is a path in which ϕ is eventually true.

E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization
Skeletons using Branching-time Temproal-logic Specifications. In Proceedings
Workshop on Logic of Programs, LNCS (1981).
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Temporal Logics
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Temporal Logics

x = 1q0

x = 2q1 q0q0q0 q0q0q1 q0q1q0 q0q1q1

q0q0 q0q1
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Interval Values

J. Allen and G. Ferguson. Actions and Events in Interval Temporal Logics.
Journal of Logic and Computation, 1994.

J. Halpern and Y. Shoham. A Propositional Modal Logic of Time Intervals.
Journal of the ACM, 38:4, pp. 935 - 962, 1991.

J. van Benthem. Logics of Time. Kluwer, 1991.
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Interval Temporal Logics

Let T = 〈T , <〉 be a frame and I (T ) = {[a, b] | a, b ∈ T and
a ≤ b} be the set of intervals over T

Models are M = 〈I (T ), {RX},V 〉 where RX ⊆ I (T )× I (T ) and
V : At→ ℘(I (T )).

I M, [a, b] |= p iff [a, b] ∈ V (p)

I M, [a, b] |= pt iff a = b

I M, [a, b] |= 〈X 〉ϕ iff there is an interval [c , d ] such that
[a, b]RX [c , d ] and M, [c , d ] |= ϕ
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Intervals of the form [a, a] are called point intervals; if
these are excluded, the resulting semantics is called strict
interval semantics (non-strict otherwise). Our results hold in
either semantics. There are 12 different non-trivial relations
(excluding the equality) between two intervals in a linear
order, often called Allen’s relations [3]: the six relations
depicted in Table I and their inverses. One can naturally
associate a modal operator hXi with each Allen’s relation
RX . For each operator hXi, we denote by hXi its transpose,
corresponding to the inverse relation.

Halpern and Shoham’s logic HS is a multi-modal logic
with formulae built over a set AP of propositional letters,
the propositional connectives _ and ¬, and a set of modal
unary operators associated with all Allen’s relations. For
each subset {RX1 , . . . , RXk

} of these relations, we define
the HS fragment X1X2 . . . Xk, whose formulae are defined
by the grammar:

' ::= p | ⇡ | ¬' | ' _ ' | hX1i' | . . . | hXki',

where ⇡ is a modal constant, true precisely at point intervals.
We omit ⇡ when it is definable in the language or when
the strict semantics is adopted. The other propositional
connectives, like ^ and !, and the dual modal operators
[X] are defined as usual, e.g., [X]' ⌘ ¬hXi¬'.

Let I(D) be the set of all intervals over D. The semantics
of an interval-based temporal logic is given in terms of
interval models M = hD, V i, where V : AP 7! 2I(D) is
the valuation function that assigns to every p 2 AP the
set of intervals V (p) over which it holds. The truth of a
formula over a given interval [a, b] in a model M is defined
by structural induction on formulae:

• M, [a, b] � ⇡ iff a = b;
• M, [a, b] � p iff [a, b] 2 V (p), for all p 2 AP;
• M, [a, b] � ¬ iff it is not the case that M, [a, b] �  ;
• M, [a, b] � ' _  iff M, [a, b] � ' or M, [a, b] �  ;
• M, [a, b] � hXii iff there exists an interval [c, d] such

that [a, b] RXi
[c, d], and M, [c, d] �  ,

Satisfiability is defined as usual.
The notion of sub-interval (contains) can be declined into

two variants, namely, proper sub-interval ([a, b] is a proper
sub-interval of [c, d] if c  a, b  d, and [a, b] 6= [c, d]),
and strict sub-interval (when both c < a and b < d). Both
variants will play a central role in our technical results;
notice that by sub-interval we usually mean the proper one.

III. A SHORT SUMMARY OF UNDECIDABILITY RESULTS

In this section, we first summarize the main undecidability
results for fragments of HS. Then, we state the main results
of this paper (Theorem III.1), which extend the previous
ones under two different aspects: (i) we prove a number of
new undecidability results for proper sub-fragments of logics
that were already known to be undecidable, and (ii) we
show how to adapt various existing undecidability proofs to
a more general class of linear orders. The first undecidability

hAi
hLi
hBi
hEi
hDi
hOi

[a, b]RA[c, d] , b = c

[a, b]RL[c, d] , b < c

[a, b]RB [c, d] , a = c, d < b

[a, b]RE [c, d] , b = d, a < c

[a, b]RD[c, d] , a < c, d < b

[a, b]RO[c, d] , a < c < b < d

a b

c d

c d

c d

c d

c d

c d

Table I
ALLEN’S INTERVAL RELATIONS AND THE CORRESPONDING HS

MODALITIES.

result, for full HS, was obtained by Halpern and Shoham [4].
Since then, several other results have been published, starting
from Lodaya [14], that proved the undecidability of the
fragment BE, when interpreted over dense linear orders,
or, alternatively, over h!,<i, where infinite intervals are
allowed. In [9], Bresolin at al. proved the undecidability
of a number of interesting fragments, such as AD⇤E⇤,
AD⇤O, AD⇤B⇤, AD⇤O, BE, BE, and BE, where, for each
X 2 {A, L,B,E,D,O}, X⇤ denotes either X or X. In [10],
the undecidability of all (HS-)extensions of the fragment O
(and thus of O), except for those with the modalities hLi and
hLi, has been proved when interpreted in any class of linear
orders with at least one infinite ascending (or descending) se-
quence. In [11], the one-modality fragment O alone has been
proved undecidable, but assuming discreteness. Recently,
Marcinkowski et al. have first shown the undecidability of
B⇤D⇤ on finite and discrete linear orders [15], and, then,
strengthened that result to the one-modality fragments D and
D [12].

Here, we first extend and complete the results from [10],
[11] by providing an undecidability proof that assumes
neither discreteness nor the presence of an infinite sequence.
Second, we strengthen the undecidability results given in [9]
by (i) proving that the logics B⇤E⇤ are undecidable over the
class of finite linear orders, and (ii) by showing that the weak
fragments A⇤D⇤ are undecidable with respect to all relevant
classes of linear orders. As a consequence, we obtain a
very sharp characterization of the decidability/undecidability
border for the family of HS-fragments, as the undecidability
for the mentioned logics holds over the class of all finite
linear orders as well as over the classical orders based on
N, Z, Q, and R.

Theorem III.1. The satisfiability problem for the HS frag-
ments O, O, A⇤D⇤, B⇤E⇤ is undecidable in any class of
linear orders that contains, for each n > 0, at least one
linear order with length greater than n.

Due to space constraints, we only detail the case of O.
First, we show how to relax the discreteness hypothesis;
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High Undecidability!

D. Bersolin et al.. The dark side of interval temporal logic: sharpening the
undecidability border. 2011.
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Epistemic Temporal Logic

R. Parikh and R. Ramanujam. A Knowledge Based Semantics of Messages.
Journal of Logic, Language and Information, 12: 453 – 467, 1985, 2003.

FHMV. Reasoning about Knowledge. MIT Press, 1995.
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The ‘Playground’
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The ‘Playground’
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Formal Languages

I Pϕ (ϕ is true sometime in the past),

I Fϕ (ϕ is true sometime in the future),

I Yϕ (ϕ is true at the previous moment),

I Nϕ (ϕ is true at the next moment),

I Neϕ (ϕ is true after event e)

I Kiϕ (agent i knows ϕ) and

I CBϕ (the group B ⊆ A commonly knows ϕ).
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History-based Models

An ETL model is a structure 〈H, {∼i}i∈A,V 〉 where 〈H, {∼i}i∈A〉
is an ETL frame and

V : At→ 2finite(H) is a valuation function.

Formulas are interpreted at pairs H, t:

H, t |= ϕ
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Truth in a Model

I H, t |= Pϕ iff there exists t ′ ≤ t such that H, t ′ |= ϕ

I H, t |= Fϕ iff there exists t ′ ≥ t such that H, t ′ |= ϕ

I H, t |= Nϕ iff H, t + 1 |= ϕ

I H, t |= Yϕ iff t > 1 and H, t − 1 |= ϕ

I H, t |= Kiϕ iff for each H ′ ∈ H and m ≥ 0 if Ht ∼i H
′
m then

H ′,m |= ϕ

I H, t |= Cϕ iff for each H ′ ∈ H and m ≥ 0 if Ht ∼∗ H ′m then
H ′,m |= ϕ.

where ∼∗ is the reflexive transitive closure of the union of the ∼i .
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An Example

Ann would like Bob to attend her talk; however, she only wants
Bob to attend if he is interested in the subject of her talk, not
because he is just being polite.

There is a very simple procedure to solve Ann’s problem: have a
(trusted) friend tell Bob the time and subject of her talk.

Is this procedure correct?
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Parameters of the Logical Framework

1. Expressivity of the formal language. Does the language include
a common knowledge operator? A future operator? Both?

2. Structural conditions on the underlying event structure. Do
we restrict to protocol frames (finitely branching trees)?
Finitely branching forests? Or, arbitrary ETL frames?

3. Conditions on the reasoning abilities of the agents. Do the
agents satisfy perfect recall? No miracles? Do they agents’
know what time it is?
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Agent Oriented Properties:

I No Miracles: For all finite histories H,H ′ ∈ H and events
e ∈ Σ such that He ∈ H and H ′e ∈ H, if H ∼i H

′ then
He ∼i H

′e.

I Perfect Recall: For all finite histories H,H ′ ∈ H and events
e ∈ Σ such that He ∈ H and H ′e ∈ H, if He ∼i H

′e then
H ∼i H

′.

I Synchronous: For all finite histories H,H ′ ∈ H, if H ∼i H
′

then len(H) = len(H ′).
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No Miracles

t = 0

t = 1

t = 2

t = 3

e2 e4

e1 e5

e1 e3

e2 e3

e7 e6

e2 e1 e2

e4 e2

e1 e3

e7i

Reasoning about Knowledge and Beliefs 52/56



No Miracles

t = 0

t = 1

t = 2

t = 3

e2 e4

e1 e5

e1 e3

e2 e3

e7 e6

e2 e1 e2

e4 e2

e1 e3

e7i

i

Reasoning about Knowledge and Beliefs 53/56



No Miracles

t = 0

t = 1

t = 2

t = 3

e2 e4

e1 e5

e1 e3

e2 e1

e7 e6

e2 e1 e2

e4 e2

e1 e5

e7

i

i

i

Reasoning about Knowledge and Beliefs 54/56



Ideal Agents

Assume there are two agents

Theorem
The logic of ideal agents with respect to a language with common
knowledge and future is highly undecidable (for example, by
assuming perfect recall).

J. Halpern and M. Vardi.. The Complexity of Reasoning abut Knowledge and
Time. J. Computer and Systems Sciences, 38, 1989.

J. van Benthem and EP. The Tree of Knowledge in Action. Proceedings of AiML,
2006.
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Constrained Public Announcement

1. A→ 〈A〉> vs. 〈A〉> → A

2. 〈A〉KiP ↔ A ∧ Ki 〈A〉P

3. 〈A〉KiP ↔ 〈A〉> ∧ Ki (A→ 〈A〉P)

4. 〈A〉KiP ↔ 〈A〉> ∧ Ki (〈A〉> → 〈A〉P)
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