Reasoning about Knowledge and Beliefs

 Lecture 17

 Lecture 17}

Eric Pacuit

University of Maryland, College Park

pacuit.org
epacuit@umd.edu

November 18, 2013

How do qualitative and quantitative belief relate to each other?
H. Leitgeb. Reducing belief simpliciter to degrees of belief. Annals of Pure and Applied Logic, 16:4, pgs. 1338-1380, 2013.

In view of the fact that we have a reasonably clear picture of what the logics of qualitative and quantitative belief are like, what conclusions can we draw form this on how qualitative and quantitative belief ought to relate to each other, assuming that they satisfy their respective logics? How do they relate to each other in the case of an agent who is a perfect reasoner?

Bridge Principles

Probability 1: $\operatorname{Be}(A)$ iff $P(A)=1$

Bridge Principles

Probability 1: $\operatorname{Bel}(A)$ iff $P(A)=1$

The Lockean Thesis: $\operatorname{Bel}(A)$ iff $P(A)>r$

Bridge Principles

Probability 1: $\operatorname{Bel}(A)$ iff $P(A)=1$

The Lockean Thesis: $\operatorname{Bel}(A)$ iff $P(A)>r$

Decision-theoretic accounts: $\operatorname{Bel}(A)$ iff $\sum_{w \in W} P(\{w\}) \cdot u($ bel $A, w)$ has such-and-such property

Bridge Principles

Probability 1: $\operatorname{Bel}(A)$ iff $P(A)=1$

The Lockean Thesis: $\operatorname{Bel}(A)$ iff $P(A)>r$

Decision-theoretic accounts: $\operatorname{Bel}(A)$ iff $\sum_{w \in W} P(\{w\}) \cdot u(b e l A, w)$ has such-and-such property

The Nihilistic proposal: "...no explication of belief is possible within the confines of the probability model."

Leitgeb's Bridge Principle

If $\operatorname{Bel}(A)$ then $P(A)>r$
where ' r ' denotes again a threshold value that is determined contextually in some way.

Quantitative Belief

Let W be a set of states and \mathfrak{A} a σ-algebra: $\mathfrak{A} \subseteq \wp(W)$ such that

- $W, \emptyset \in \mathfrak{A}$
- if $X \in \mathfrak{A}$ then $W-X \in \mathfrak{A}$
- if $X, Y \in \mathfrak{A}$ then $X \cup Y \in \mathfrak{A}$
- if $X_{0}, X_{1}, \ldots \in \mathfrak{A}$ then $\bigcup_{i \in \mathbb{N}} X_{i} \in \mathfrak{A}$.

Quantitative Belief

$P: \mathfrak{A} \rightarrow[0,1]$ satisfying the usual constraints

- $P(W)=1$
- (finite additivity) If $X_{1}, X_{2} \in \mathfrak{A}$ are pairwise disjoint, then $P\left(X_{1} \cup X_{2}\right)=P\left(X_{1}\right)+P\left(X_{2}\right)$
$P(Y \mid X)=\frac{P(Y \cap X)}{P(X)}$ whenever $P(X)>0$. So, $P(Y \mid W)$ is $P(Y)$.
- P is countably additive (σ-additive): if $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ are pairwise disjoint members of \mathfrak{A}, then

$$
P\left(\bigcup_{n \in \mathbb{N}} X_{n}\right)=\sum_{n \in \mathbb{N}} P\left(X_{n}\right)
$$

Qualitative Belief

Let W be a set of states and $B e l$ the set of propositions from \mathfrak{A} that the agent currently believes.

Qualitative Belief

Let W be a set of states and $B e l$ the set of propositions from \mathfrak{A} that the agent currently believes. Write $\operatorname{Bel}(X)$ for $X \in B e l$

Qualitative Belief

Let W be a set of states and $B e l$ the set of propositions from \mathfrak{A} that the agent currently believes. Write $\operatorname{Bel}(X)$ for $X \in B e l$

- $\operatorname{Bel}(W)$
- For all $X, Y \in \mathfrak{A}$, if $\operatorname{Bel}(X)$ and $X \subseteq Y$ then $\operatorname{Bel}(Y)$
- For all $X, Y \in \mathfrak{A}$, if $\operatorname{Bel}(X)$ and $\operatorname{Bel}(Y)$ then $\operatorname{Bel}(X \cap Y)$
- For $\mathcal{Y}=\{Y \in \mathfrak{A} \mid \operatorname{Bel}(Y)\}, \bigcap \mathcal{Y} \in \mathfrak{A}$ and $\operatorname{Bel}(\bigcap \mathcal{Y})$
- $\neg \operatorname{Bel}(\emptyset)$

Qualitative Belief

Let W be a set of states and $B e l$ the set of propositions from \mathfrak{A} that the agent currently believes. Write $\operatorname{Bel}(X)$ for $X \in B e l$

- $\operatorname{Bel}(W)$
- For all $X, Y \in \mathfrak{A}$, if $\operatorname{Bel}(X)$ and $X \subseteq Y$ then $\operatorname{Bel}(Y)$
- For all $X, Y \in \mathfrak{A}$, if $\operatorname{Bel}(X)$ and $\operatorname{Bel}(Y)$ then $\operatorname{Bel}(X \cap Y)$
- For $\mathcal{Y}=\{Y \in \mathfrak{A} \mid \operatorname{Bel}(Y)\}, \cap \mathcal{Y} \in \mathfrak{A}$ and $\operatorname{Bel}(\bigcap \mathcal{Y})$
- $\neg \operatorname{Bel}(\emptyset)$
"We will interpret such conditional beliefs in suppositional terms: they are beliefs that the agent has under the supposition of certain propositions, where the only type of supposition that we will be concerned with will be supposition as a matter of fact, that is, suppositions which are usually expressed in the indicative, rather than the subjunctive mood: Suppose that X is the case. Then I believe that Y is the case."

Let $B e l_{X}$ be the set of propositions that the agent believes conditional on X, write $\operatorname{Bel}(Y \mid X)$ when $Y \in \operatorname{Bel}_{X}$.

B1 (Reflexivity) If $\neg \operatorname{Bel}(\neg X \mid W)$, then $\operatorname{Bel}(X \mid X)$.
B2 (One Premise Logical Closure) If $\neg \operatorname{Bel}(\neg X \mid W)$, then for all $Y, Z \in \mathfrak{A}$: if $\operatorname{Bel}(Y \mid X)$ and $Y \subseteq Z$, then $\operatorname{Bel}(Z \mid X)$

B3 (Finite Conjunction) If $\neg \operatorname{Bel}(\neg X \mid W)$, then for all $Y, Z \in \mathfrak{A}$: if $\operatorname{Bel}(Y \mid X)$ and $\operatorname{Bel}(Z \mid X)$, then $\operatorname{Bel}(Y \cap Z \mid X)$.

B4 (General Conjunction) If $\neg \operatorname{Bel}(\neg X \mid W)$, then for $\mathcal{Y}=\{Y \in \mathfrak{A} \mid \operatorname{Bel}(Y \mid X)\}, \bigcap \mathcal{Y} \in \mathfrak{A}$ and $\operatorname{Bel}(\bigcap \mathcal{Y} \mid X)$

B5 (Consistency) $\neg \operatorname{Bel}(\emptyset \mid X)$
B6 For all $Y \in \mathfrak{A}$ such that $Y \cap B_{W} \neq \emptyset$: For all $Z \in \mathfrak{A}$, $\operatorname{Bel}(Z \mid Y)$ iff $Z \supseteq Y \cap B_{W}$.

B1 (Reflexivity) If $\neg \operatorname{Bel}(\neg X \mid W)$, then $\operatorname{Bel}(X \mid X)$.
B2 (One Premise Logical Closure) If $\neg \operatorname{Bel}(\neg X \mid W)$, then for all $Y, Z \in \mathfrak{A}$: if $\operatorname{Bel}(Y \mid X)$ and $Y \subseteq Z$, then $\operatorname{Bel}(Z \mid X)$

B3 (Finite Conjunction) If $\neg \operatorname{Bel}(\neg X \mid W)$, then for all $Y, Z \in \mathfrak{A}$: if $\operatorname{Bel}(Y \mid X)$ and $\operatorname{Bel}(Z \mid X)$, then $\operatorname{Bel}(Y \cap Z \mid X)$.

B4 (General Conjunction) If $\neg \operatorname{Bel}(\neg X \mid W)$, then for $\mathcal{Y}=\{Y \in \mathfrak{A} \mid \operatorname{Bel}(Y \mid X)\}, \bigcap \mathcal{Y} \in \mathfrak{A}$ and $\operatorname{Bel}(\bigcap \mathcal{Y} \mid X)$

B5 (Consistency) $\neg \operatorname{Bel}(\emptyset \mid X)$
B6 For all $Y \in \mathfrak{A}$ such that $Y \cap B_{W} \neq \emptyset$: For all $Z \in \mathfrak{A}$, $\operatorname{Bel}(Z \mid Y)$ iff $Z \supseteq Y \cap B_{W}$.

Variant of B6

For all $Y \in \mathfrak{A}$ such that $Y \cap B_{W} \neq \emptyset$: For all $Z \in \mathfrak{A}, \operatorname{Bel}(Z \mid Y)$ iff $Z \supseteq Y \cap B_{W}$.

For all $Y \in \mathfrak{A}$ such that $Y \cap B_{W} \neq \emptyset: B_{Y}=Y \cap B_{W}$

BP1 ${ }^{r}$ For all $Y \in \mathfrak{A}$ such that $Y \cap B_{W} \neq \emptyset$ and $P(Y)>0$: For all $Z \in \mathfrak{A}$, if $\operatorname{Bel}(Z \mid Y)$, then $P(Z \mid Y)>r$

BP1 ${ }^{r}$ For all $Y \in \mathfrak{A}$ such that $Y \cap B_{W} \neq \emptyset$ and $P(Y)>0$: For all $Z \in \mathfrak{A}$, if $\operatorname{Bel}(Z \mid Y)$, then $P(Z \mid Y)>r$
"So, it follows that $P\left(B_{W} \mid W\right)=P\left(B_{W}\right)>r$. Therefore,..., having a subjective probability of more than r is a necessary condition for a proposition to be believed absolutely, although it will become clear later that this is not necessarily a sufficient condition."

P-stability ${ }^{r}$

Definition. Let P be a probability measure on \mathfrak{A} over W, let $0 \leq r<1$. For all $X \in \mathfrak{A}$:
X is P-stable ${ }^{r}$ if and only if for all $Y \in \mathfrak{A}$ with $Y \cap X \neq \emptyset$ and $P(Y)>0: P(X \mid Y)>r$.

- Trivially, the empty set of P-stable ${ }^{r}$.

P-stability ${ }^{r}$

Definition. Let P be a probability measure on \mathfrak{A} over W, let $0 \leq r<1$. For all $X \in \mathfrak{A}:$
X is P-stable ${ }^{r}$ if and only if for all $Y \in \mathfrak{A}$ with $Y \cap X \neq \emptyset$ and $P(Y)>0: P(X \mid Y)>r$.

- Trivially, the empty set of P-stable ${ }^{r}$.
- If $P(X)=1$, then X is P-stable ${ }^{r}$.

P-stability ${ }^{r}$

Definition. Let P be a probability measure on \mathfrak{A} over W, let $0 \leq r<1$. For all $X \in \mathfrak{A}$:
X is P-stable ${ }^{r}$ if and only if for all $Y \in \mathfrak{A}$ with $Y \cap X \neq \emptyset$ and

$$
P(Y)>0: P(X \mid Y)>r
$$

- Trivially, the empty set of P-stable ${ }^{r}$.
- If $P(X)=1$, then X is P-stable ${ }^{r}$.
- There are P-stable ${ }^{r}$ sets with $0<P(X)<1$.

P-stability ${ }^{r}$

Definition. Let P be a probability measure on \mathfrak{A} over W, let $0 \leq r<1$. For all $X \in \mathfrak{A}$:
X is P-stable ${ }^{r}$ if and only if for all $Y \in \mathfrak{A}$ with $Y \cap X \neq \emptyset$ and

$$
P(Y)>0: P(X \mid Y)>r
$$

- Trivially, the empty set of P-stable ${ }^{r}$.
- If $P(X)=1$, then X is P-stable ${ }^{r}$.
- There are P-stable ${ }^{r}$ sets with $0<P(X)<1$.
- X is P-stable ${ }^{r}$ iff for all $Y, Z \in \mathfrak{A}$ such that $Y \neq \emptyset, Y \subseteq X$ and where $Z \subseteq \neg X, P(Z)>0$ it holds that:

$$
P(Y)>\frac{r}{1-r} P(Z)
$$

Observation. For all $X \in \mathfrak{A}$ with X non-empty and P-stable ${ }^{r}$: If $P(X)<1$, then there is no non-empty $Y \subseteq X$ with $Y \in \mathfrak{A}$ and $P(Y)=0$.

Theorem. Let $B e l$ be a class of ordered pairs of members of a σ-algebra \mathfrak{A}, let $P: \mathfrak{A} \rightarrow[0,1]$, and let $0 \leq r<1$. Then the following two statements are equivalent:

1. P and $B e l$ satisfy $P 1, B 1-B 6$, and $B P 1 r$.
2. P satisfies $P 1$, and there is an $X \in \mathfrak{A}$, such that X is a non-empty P-stable ${ }^{r}$ proposition, and:

- For all $Y \in \mathfrak{A}$ such that $Y \cap X \neq \emptyset$, for all $Z \in \mathfrak{A}$:

$$
\operatorname{Bel}(Z \mid Y) \text { if and only if } Z \supseteq Y \cap X
$$

(and hence, $B_{W}=X$)
Furthermore, if 1 is the case, then X in 2 is actually uniquely determined.
"Every believed proposition must then have a probability that lies somewhere in the closed interval $[P(X), 1]$ so that $P(X)$ becomes a lower threshold value; furthermore, since X is P-stable ${ }^{r}, P(X)$ itself is strictly bounded from below by $r \ldots r$ is not necessarily give by the result of applying P to some distinguished proposition or the like-it could be chosen before any considerations on P or Bel commence.

Finding P-stable ${ }^{r}$ sets

Suppose that W is finite:
X is P-stable ${ }^{r}$ iff for all $w \in X$ it holds that $P(\{w\})>\frac{r}{1-r} P(W-X)$

Finding P-stable ${ }^{r}$ sets

Suppose that W is finite:
X is P-stable ${ }^{r}$ iff for all $w \in X$ it holds that $P(\{w\})>\frac{r}{1-r} P(W-X)$
Suppose that $r=\frac{1}{2}$

1. Remove all worlds assigned probability 0

Finding P-stable ${ }^{r}$ sets

Suppose that W is finite:
X is P-stable ${ }^{r}$ iff for all $w \in X$ it holds that $P(\{w\})>\frac{r}{1-r} P(W-X)$
Suppose that $r=\frac{1}{2}$

1. Remove all worlds assigned probability 0
2. Order the members of W such that

$$
P\left(\left\{w_{1}\right\}\right) \geq P\left(\left\{w_{2}\right\}\right) \geq \cdots \geq P\left(\left\{w_{n}\right\}\right)
$$

Finding P-stable ${ }^{r}$ sets

Suppose that W is finite:
X is P-stable ${ }^{r}$ iff for all $w \in X$ it holds that
$P(\{w\})>\frac{r}{1-r} P(W-X)$
Suppose that $r=\frac{1}{2}$

1. Remove all worlds assigned probability 0
2. Order the members of W such that

$$
P\left(\left\{w_{1}\right\}\right) \geq P\left(\left\{w_{2}\right\}\right) \geq \cdots \geq P\left(\left\{w_{n}\right\}\right)
$$

3. If $P\left(\left\{w_{1}\right\}\right)>P\left(\left\{w_{2}\right\}\right)+\cdots+P\left(\left\{w_{n}\right\}\right)$ then $\left\{w_{1}\right\}$ is the first P-stable ${ }^{\frac{1}{2}}$ set.

Finding P-stable ${ }^{r}$ sets

Suppose that $r=\frac{1}{2}$

1. If $P\left(\left\{w_{1}\right\}\right) \leq P\left(\left\{w_{2}\right\}\right)+\cdots+P\left(\left\{w_{n}\right\}\right)$, then consider $\left\{w_{1}, w_{2}\right\}$ from the start.

Finding P-stable ${ }^{r}$ sets

Suppose that $r=\frac{1}{2}$

1. If $P\left(\left\{w_{1}\right\}\right) \leq P\left(\left\{w_{2}\right\}\right)+\cdots+P\left(\left\{w_{n}\right\}\right)$, then consider $\left\{w_{1}, w_{2}\right\}$ from the start.
2. If both $P\left(\left\{w_{1}\right\}\right)$ and $P\left(\left\{w_{2}\right\}\right)$ are greater than $P\left(\left\{w_{3}\right\}\right)+\cdots+P\left(\left\{w_{n}\right\}\right)$, then $\left\{w_{1}, w_{2}\right\}$ is the (next) P-stable ${ }^{\frac{1}{2}}$ set and move onto the list $P\left(\left\{w_{3}\right\}\right), \ldots, P\left(\left\{w_{n}\right\}\right)$.

Finding P-stable ${ }^{r}$ sets

Suppose that $r=\frac{1}{2}$

1. If $P\left(\left\{w_{1}\right\}\right) \leq P\left(\left\{w_{2}\right\}\right)+\cdots+P\left(\left\{w_{n}\right\}\right)$, then consider $\left\{w_{1}, w_{2}\right\}$ from the start.
2. If both $P\left(\left\{w_{1}\right\}\right)$ and $P\left(\left\{w_{2}\right\}\right)$ are greater than $P\left(\left\{w_{3}\right\}\right)+\cdots+P\left(\left\{w_{n}\right\}\right)$, then $\left\{w_{1}, w_{2}\right\}$ is the (next) P-stable ${ }^{\frac{1}{2}}$ set and move onto the list $P\left(\left\{w_{3}\right\}\right), \ldots, P\left(\left\{w_{n}\right\}\right)$.
3. If either are less than or equal to $P\left(\left\{w_{3}\right\}\right)+\cdots+P\left(\left\{w_{n}\right\}\right)$ then consider $P\left(\left\{w_{1}\right\}\right), P\left(\left\{w_{2}\right\}\right), P\left(\left\{w_{3}\right\}\right)$ and so forth.

$\left\{w_{1}\right\},\left\{w_{1}, w_{2}\right\},\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}, \ldots$ are P-stable ${ }^{\frac{1}{2}}$

$\left\{w_{1}\right\},\left\{w_{1}, w_{2}\right\},\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}, \ldots$ are P-stable ${ }^{\frac{1}{2}}$ neither $\left\{w_{1}, w_{2}, w_{3}\right\}$ nor $\left\{w_{1}, w_{2}, w_{4}\right\}$ are P-stable ${ }^{\frac{1}{2}}$.

$\left\{w_{1}, \ldots, w_{5}\right\},\left\{w_{1}, \ldots, w_{6}\right\}$ are P-stable ${ }^{\frac{3}{4}}$

Theorem. Let $P: \mathfrak{A} \rightarrow[0,1]$ such that $P 1$ is satisfied. Let $\frac{1}{2} \leq r<1$. Then the following is the case:

Theorem. Let $P: \mathfrak{A} \rightarrow[0,1]$ such that $P 1$ is satisfied. Let $\frac{1}{2} \leq r<1$. Then the following is the case:

1. For all $X, X^{\prime} \in \mathfrak{A}$: If X and X^{\prime} are P-stable ${ }^{r}$ and at least one of $P(X)$ and $P\left(X^{\prime}\right)$ is less than 1 , then either $X \subseteq X^{\prime}$ or $X^{\prime} \subseteq X$ (or both).

Theorem. Let $P: \mathfrak{A} \rightarrow[0,1]$ such that $P 1$ is satisfied. Let $\frac{1}{2} \leq r<1$. Then the following is the case:

1. For all $X, X^{\prime} \in \mathfrak{A}$: If X and X^{\prime} are P-stable ${ }^{r}$ and at least one of $P(X)$ and $P\left(X^{\prime}\right)$ is less than 1 , then either $X \subseteq X^{\prime}$ or $X^{\prime} \subseteq X$ (or both).
2. If P also satisfies $P 2$, then there is no infinitely descending chain of sets in \mathfrak{A} that are all subsets of some P-stable ${ }^{r}$ set X_{0} of \mathfrak{A} with probability less than 1 . That is, there is no countably infinite sequence

$$
X_{0} \supsetneq X_{1} X_{2} \supsetneq \cdots
$$

of sets in \mathfrak{A} such that X_{0} is P-stable ${ }^{r}, P\left(X_{0}\right)<1$ and each X_{n} is a proper superset of X_{n+1}.

- With P2 and $r \geq \frac{1}{2}$, The class of P-stable ${ }^{r}$ propositions X in \mathfrak{A} with $P(X)<1$ is well-ordered with respect to the subset relation.
- If there is a non-empty P-stable ${ }^{r} X \in \mathfrak{A}$ with $P(X)<1$, then there is also a least such X.

- With P2 and $r \geq \frac{1}{2}$, The class of P-stable ${ }^{r}$ propositions X in \mathfrak{A} with $P(X)<1$ is well-ordered with respect to the subset relation.
- If there is a non-empty P-stable ${ }^{r} X \in \mathfrak{A}$ with $P(X)<1$, then there is also a least such X.

BP2 (Zero Supposition) For all $Y \in \mathfrak{A}$: If $P(Y)=0$ and $Y \cap B_{W} \neq \emptyset$, then $B_{Y} \neq \emptyset$

This implies that there is a least X such that $P(X)=1$.

BP3 (Maximiality) Among all classes Bel' of ordered pairs of members of \mathfrak{A}, such that P and $B e l^{\prime}$ jointly satisfy $P 1-P 2$, $B 1-B 6, B P 1^{r}, B P 2$, the class $B e l$ is the largest with respect to the class of beliefs.

Let $P: \mathfrak{A} \rightarrow[0,1]$ be a countably additive probability measure on a σ-algebra \mathfrak{A}, such that there exists a least set of probability 1 in \mathfrak{A}.

Let $X_{\text {least }}$ be the least non-empty P-stable ${ }^{r}$ proposition in \mathfrak{A} (which exists).
Then we say for all $Y \in \mathfrak{A}$ and $\frac{1}{2} \leq r<1$: Bel ${ }_{P}^{r}(Y)$ iff $Y \supseteq X_{\text {least }}$ (i.e., Y is believed to a cautiousness degree of r as given by P)

- Lottery Paradox: Given a uniform measure P on a finite set W, W is the only P-stable ${ }^{r}$ set with $r \geq \frac{1}{2}$; so only W is believed.
- Preface Paradox: $\operatorname{Bel}\left(X_{1}\right), \ldots \operatorname{Bel}\left(X_{n}\right), \operatorname{Bel}\left(\neg X_{1} \vee \cdots \vee \neg X_{n}\right)$ is impossible, but we can have $\operatorname{Bel}\left(X_{1}\right), \ldots \operatorname{Bel}\left(X_{n}\right)$, $P\left(\neg X_{1} \vee \cdots \vee \neg X_{n}\right)>0$
- If $r<\frac{1}{2}$, then we can take $B e l$ to express a weaker epistemic attitude, i.e., Suppose X, proposition Y is an interesting or salient thesis that is to be investigated further.

