Proof of Gärdenfors Impossibility Result

Eric Pacuit*

October 30, 2013

Let $K / A=C n(K \cup\{A\})$

Assumptions:

1. A, B and C are three propositions such that
(a) $\neg A \notin K$
(b) $\neg B \notin K$
(c) $\neg C \notin K$
(d) $\vdash \neg(A \wedge B)$
(e) $\vdash \neg(A \wedge C)$
(f) $\vdash \neg(B \wedge C)$
(1) $A \in K_{A}$
(2) If $K \neq K_{\perp}$ and $K_{A}=K_{\perp}$ then $\vdash \neg A$
(R) $A>B \in K$ iff $B \in K * A$
(M) For all K, K^{\prime} and $A, K \subseteq K^{\prime}$ implies $K_{A} \subseteq K_{A}^{\prime}$
(P) If $\neg A \notin K$ and $B \in K$ then $B \in K_{A}$
(3) $(K / A) / B=K /(A \wedge B)$ $C n(C n(K \cup\{A\}) \cup\{B\})=C n(K \cup\{A \wedge B\})$
(4) $K /(A \vee B) \subseteq K / A$
$C n(K \cup\{A \vee B\}) \subseteq C n(K \cup\{A\})$
(I) If $\neg A \notin K$ then $K / A \subseteq K_{A}$

Lemma 0.1 (R) implies (M).
Proof. Suppose that $K \subseteq K^{\prime}$ and $B \in K_{A}$. By (R), $A>B \in K$ which implies $A>B \in K^{\prime}$. Again by (R), $B \in K_{A}^{\prime}$. Since B was arbitrary, $K_{A} \subseteq K_{A}^{\prime}$.

QED

[^0]Theorem 0.2 There is no non-trivial belief revision model that satisfies all the conditions (1), (2), (M) and (P).

Proof.

- Suppose A, B and C satisfy 1 . above.
- We first show that $\neg C \notin(K /(A \vee B))_{B \vee C}$

1. By (1), $B \vee C \in\left(K_{A}\right)_{B \vee C}$
2. Since, $\left(K_{A}\right)_{B \vee C}$ is consistent (this follows from (2)), either $\neg B \notin\left(K_{A}\right)_{B \vee C}$ or $\neg C \notin\left(K_{A}\right)_{B \vee C}$.
3. Assume $\neg C \notin\left(K_{A}\right)_{B \vee C}$ (the other case is similar).
4. By $(4), K /(A \vee B) \subseteq K / A$
5. Since $\neg A \notin K$ (assumption 1(a)), by (I) $K /(A \vee B) \subseteq K / A \subseteq K_{A}$.
6. $\mathrm{By}(\mathrm{M}),(K /(A \vee B))_{B \vee C} \subseteq\left(K_{A}\right)_{B \vee C}$
7. Hence, $\neg C \notin(K /(A \vee B))_{B \vee C}($ from 3.)

- Now show that $\neg C \in(K /(A \vee B))_{B \vee C}$

1. $\neg(B \vee C) \notin K /(A \vee B)$. (Suppose $\neg(B \vee C) \in K /(A \vee B)$. By $(4), K /(A \vee B) \subseteq K / B$. Hence $\neg(B \vee C) \in K / B$. This is a contradiction, since it implies $\neg B \in K / B$ and of course $B \in K / B$.)
2. $\mathrm{By}(\mathrm{I}),(K /(A \vee B)) /(B \vee C) \subseteq(K /(A \vee B))_{B \vee C}$.
3. By $(3),(K /(A \vee B)) /(B \vee C)=K /((A \vee B) \wedge(B \vee C))$. Since A, B and C are pairwise disjoint, we have $K /((A \vee B) \wedge(B \vee C))=K / B$.
4. By 2. and $3 ., K / B \subseteq(K /(A \vee B))_{B \vee C}$.
5. Since $B \in K / B$ and $\vdash \neg(B \wedge C)$, we have $\neg C \in K / B$.
6. Hence, $\neg C \in(K /(A \vee B))_{B \vee C}$.

- This is a contradiction.

QED

[^0]: * Webpage: pacuit.org, Email: epacuit@umd.edu

