Proof of Gärdenfors Impossibility Result

Eric Pacuit*

October 30, 2013

Let $K/A = Cn(K \cup \{A\})$

Assumptions:

- 1. A, B and C are three propositions such that
 - (a) $\neg A \notin K$
 - (b) $\neg B \notin K$
 - (c) $\neg C \notin K$
 - (d) $\vdash \neg (A \land B)$
 - (e) $\vdash \neg (A \land C)$
 - (f) $\vdash \neg (B \land C)$
- (1) $A \in K_A$
- (2) If $K \neq K_{\perp}$ and $K_A = K_{\perp}$ then $\vdash \neg A$
- (R) $A > B \in K$ iff $B \in K * A$
- (M) For all K, K' and $A, K \subseteq K'$ implies $K_A \subseteq K'_A$
- (P) If $\neg A \notin K$ and $B \in K$ then $B \in K_A$
- (3) $(K/A)/B = K/(A \land B)$ $Cn(Cn(K \cup \{A\}) \cup \{B\}) = Cn(K \cup \{A \land B\})$
- (4) $K/(A \lor B) \subseteq K/A$ $Cn(K \cup \{A \lor B\}) \subseteq Cn(K \cup \{A\})$
- (I) If $\neg A \notin K$ then $K/A \subseteq K_A$

Lemma 0.1 (R) implies (M).

Proof. Suppose that $K \subseteq K'$ and $B \in K_A$. By (R), $A > B \in K$ which implies $A > B \in K'$. Again by (R), $B \in K'_A$. Since B was arbitrary, $K_A \subseteq K'_A$. QED

^{*} Webpage: pacuit.org, Email: epacuit@umd.edu

Theorem 0.2 There is no non-trivial belief revision model that satisfies all the conditions (1), (2), (M) and (P).

Proof.

- Suppose A, B and C satisfy 1. above.
- We first show that $\neg C \notin (K/(A \lor B))_{B \lor C}$
 - 1. By (1), $B \lor C \in (K_A)_{B \lor C}$
 - 2. Since, $(K_A)_{B\vee C}$ is consistent (this follows from (2)), either $\neg B \notin (K_A)_{B\vee C}$ or $\neg C \notin (K_A)_{B\vee C}$.
 - 3. Assume $\neg C \notin (K_A)_{B \lor C}$ (the other case is similar).
 - 4. By (4), $K/(A \lor B) \subseteq K/A$
 - 5. Since $\neg A \notin K$ (assumption 1(a)), by (I) $K/(A \lor B) \subseteq K/A \subseteq K_A$.
 - 6. By (M), $(K/(A \lor B))_{B \lor C} \subseteq (K_A)_{B \lor C}$
 - 7. Hence, $\neg C \notin (K/(A \lor B))_{B \lor C}$ (from 3.)
- Now show that $\neg C \in (K/(A \lor B))_{B \lor C}$
 - 1. $\neg(B \lor C) \notin K/(A \lor B)$. (Suppose $\neg(B \lor C) \in K/(A \lor B)$. By (4), $K/(A \lor B) \subseteq K/B$. Hence $\neg(B \lor C) \in K/B$. This is a contradiction, since it implies $\neg B \in K/B$ and of course $B \in K/B$.)
 - 2. By (I), $(K/(A \lor B))/(B \lor C) \subseteq (K/(A \lor B))_{B \lor C}$.
 - 3. By (3), $(K/(A \lor B))/(B \lor C) = K/((A \lor B) \land (B \lor C))$. Since A, B and C are pairwise disjoint, we have $K/((A \lor B) \land (B \lor C)) = K/B$.
 - 4. By 2. and $3.K/B \subseteq (K/(A \lor B))_{B \lor C}$.
 - 5. Since $B \in K/B$ and $\vdash \neg (B \land C)$, we have $\neg C \in K/B$.
 - 6. Hence, $\neg C \in (K/(A \lor B))_{B \lor C}$.
- This is a contradiction.

QED