Reasoning about Knowledge and Beliefs
 Lecture 9

Eric Pacuit

University of Maryland, College Park
pacuit.org
epacuit@umd.edu

October 9, 2013

Finding out that φ

$$
\mathcal{M}=\left\langle W,\left\{\sim_{i}\right\}_{i \in \mathcal{A}},\left\{\preceq_{i}\right\}_{i \in \mathcal{A}}, V\right\rangle
$$

Find out that φ

$$
\mathcal{M}^{\prime}=\left\langle W^{\prime},\left\{\sim_{i}^{\prime}\right\}_{i \in \mathcal{A}},\left\{\preceq_{i}^{\prime}\right\}_{i \in \mathcal{A}},\left.V\right|_{W^{\prime}}\right\rangle
$$

Public Announcement Logic

Suppose $\mathcal{M}=\left\langle W,\left\{\sim_{i}\right\}_{i \in \mathcal{A}},\left\{\preceq_{i}\right\}_{i \in \mathcal{A}}, V\right\rangle$ is a multi-agent Kripke Model

$$
\mathcal{M}, w \models[\psi] \varphi \text { iff } \mathcal{M}, w \models \psi \text { implies }\left.\mathcal{M}\right|_{\psi}, w \models \varphi
$$

where $\left.\mathcal{M}\right|_{\psi}=\left\langle W^{\prime},\left\{\sim_{i}^{\prime}\right\}_{i \in \mathcal{A}},\left\{\preceq_{i}^{\prime}\right\}_{i \in \mathcal{A}}, V^{\prime}\right\rangle$ with

- $W^{\prime}=W \cap\{w \mid \mathcal{M}, w \models \psi\}$
- For each $i, \sim_{i}^{\prime}=\sim_{i} \cap\left(W^{\prime} \times W^{\prime}\right)$
- For each $i, \preceq_{i}^{\prime}=\preceq_{i} \cap\left(W^{\prime} \times W^{\prime}\right)$
- for all $p \in \mathrm{At}, V^{\prime}(p)=V(p) \cap W^{\prime}$

Self-Refuting Announcements

Suppose that in the College Park and Amsterdam example, the Amsterdam agent (a perfectly trustworthy source of weather information) tells the College Park agent over the phone, "You don't know it, but it's raining in Amsterdam": $\neg K_{b} r \wedge r$.

Self-Refuting Announcements

Suppose that in the College Park and Amsterdam example, the Amsterdam agent (a perfectly trustworthy source of weather information) tells the College Park agent over the phone, "You don't know it, but it's raining in Amsterdam": $\neg K_{b} r \wedge r$.

Self-Refuting Announcements

Suppose that in the College Park and Amsterdam example, the Amsterdam agent (a perfectly trustworthy source of weather information) tells the College Park agent over the phone, "You don't know it, but it's raining in Amsterdam": $\neg K_{b} r \wedge r$.

Observe that $\mathcal{M}, w_{1} \vDash\left\langle!\neg K_{b} r \wedge r\right\rangle \neg\left(\neg K_{b} r \wedge r\right)$.

Self-Refuting Announcements

Suppose that in the College Park and Amsterdam example, the Amsterdam agent (a perfectly trustworthy source of weather information) tells the College Park agent over the phone, "You don't know it, but it's raining in Amsterdam": $\neg K_{b} r \wedge r$.

Observe that $\mathcal{M}, w_{1} \vDash\left\langle!\neg K_{b} r \wedge r\right\rangle \neg\left(\neg K_{b} r \wedge r\right)$.
Delete the world w_{2} where $\neg K_{b} r \wedge r$ is false.

Self-Refuting Announcements

Suppose that in the College Park and Amsterdam example, the Amsterdam agent (a perfectly trustworthy source of weather information) tells the College Park agent over the phone, "You don't know it, but it's raining in Amsterdam": $\neg K_{b} r \wedge r$.

Observe that $\mathcal{M}, w_{1} \vDash\left\langle!\neg K_{b} r \wedge r\right\rangle \neg\left(\neg K_{b} r \wedge r\right)$.
Observe that $\mathcal{M}_{\mid \neg K_{b} r \wedge r}, w_{1} \vDash \neg\left(\neg K_{b} r \wedge r\right)$.

Self-Refuting Announcements

Not only is the update with $\neg K_{b} r \wedge r$ unsuccessful in this specific case, but in general $\neg K_{b} r \wedge r$ is self-refuting. Let $\alpha:=\neg K_{b} r \wedge r$.

Self-Refuting Announcements

Not only is the update with $\neg K_{b} r \wedge r$ unsuccessful in this specific case, but in general $\neg K_{b} r \wedge r$ is self-refuting. Let $\alpha:=\neg K_{b} r \wedge r$.

Proof. Suppose $\mathcal{M}, w \vDash \alpha$. In $\mathcal{M}_{\mid \alpha}$, there are no worlds where r is false. Hence $\mathcal{M}_{\mid \alpha}, w \vDash K_{b} r$, which means $\mathcal{M}_{\mid \alpha}, w \vDash \neg \alpha$. Thus, $\mathcal{M}, w \vDash[!\alpha] \neg \alpha$. Since \mathcal{M}, w was arbitrary, $[!\alpha] \neg \alpha$ is valid.

Self-Refuting Announcements

Not only is the update with $\neg K_{b} r \wedge r$ unsuccessful in this specific case, but in general $\neg K_{b} r \wedge r$ is self-refuting. Let $\alpha:=\neg K_{b} r \wedge r$.

Proof. Suppose $\mathcal{M}, w \vDash \alpha$. In $\mathcal{M}_{\mid \alpha}$, there are no worlds where r is false. Hence $\mathcal{M}_{\mid \alpha}, w \vDash K_{b} r$, which means $\mathcal{M}_{\mid \alpha}, w \vDash \neg \alpha$. Thus, $\mathcal{M}, w \vDash[!\alpha] \neg \alpha$. Since \mathcal{M}, w was arbitrary, $[!\alpha] \neg \alpha$ is valid.

Question: is $\neg K_{b} \varphi \wedge \varphi$ self-refuting for all φ ?

Self-Refuting Announcements

Not only is the update with $\neg K_{b} r \wedge r$ unsuccessful in this specific case, but in general $\neg K_{b} r \wedge r$ is self-refuting. Let $\alpha:=\neg K_{b} r \wedge r$.

Proof. Suppose $\mathcal{M}, w \vDash \alpha$. In $\mathcal{M}_{\mid \alpha}$, there are no worlds where r is false. Hence $\mathcal{M}_{\mid \alpha}, w \vDash K_{b} r$, which means $\mathcal{M}_{\mid \alpha}, w \vDash \neg \alpha$. Thus, $\mathcal{M}, w \vDash[!\alpha] \neg \alpha$. Since \mathcal{M}, w was arbitrary, $[!\alpha] \neg \alpha$ is valid.

Question: is $\neg K_{b} \varphi \wedge \varphi$ self-refuting for all φ ?
Or is there a φ such that if you receive the true information (from a source you know to be infallible) that "you don't know it, but $\varphi, "$ it can remain true afterward that you don't know it, but φ ?

What's Wrong with Moore Sentences?

Is there a φ such that if you receive the true information (from a source you know to be infallible) that "you don't know it, but φ," it can remain true afterward that you don't know it, but φ ?

What's Wrong with Moore Sentences?

Is there a φ such that if you receive the true information (from a source you know to be infallible) that "you don't know it, but φ, ," it can remain true afterward that you don't know it, but φ ?

If you know that I am well informed and if I address the words ... to you, these words have a curious effect which may perhaps be called anti-performatory. You may come to know that what I say was true, but saying it in so many words has the effect of making what is being said false. (68-69)
J. Hintikka 1962. Knowledge and Belief.

What's Wrong with Moore Sentences?

Is there a φ such that if you receive the true information (from a source you know to be infallible) that "you don't know it, but φ, ," it can remain true afterward that you don't know it, but φ ?

If you know that I am well informed and if I address the words ... to you, these words have a curious effect which may perhaps be called anti-performatory. You may come to know that what I say was true, but saying it in so many words has the effect of making what is being said false. (68-69)
J. Hintikka 1962. Knowledge and Belief.

Surprisingly, this is not always the case, as we will now show...

What's Wrong with Moore Sentences?

If you know that I am well informed and if I address the words ... to you, these words have a curious effect which may perhaps be called anti-performatory. You may come to know that what I say was true, but saying it in so many words has the effect of making what is being said false. (68-69)
J. Hintikka 1962. Knowledge and Belief.

Surprisingly, this is not always the case, as we will now show...
We will show this with the Puzzle of the Gifts from

```
W. Holliday, T. Hoshi, and T. Icard. 2013
    "Information Dynamics and Uniform Substitution," Synthese.
```


The Puzzle of the Gifts

With my hands behind my back, I walk into a room where a friend \mathbf{F} is sitting. \mathbf{F} did not see what if anything I put in my hands, and I know this. In fact, I have gifts for \mathbf{F} in both hands. Instead of asking \mathbf{F} to "pick a hand, any hand," I truthfully announce:

The Puzzle of the Gifts

With my hands behind my back, I walk into a room where a friend \mathbf{F} is sitting. \mathbf{F} did not see what if anything I put in my hands, and I know this. In fact, I have gifts for \mathbf{F} in both hands. Instead of asking \mathbf{F} to "pick a hand, any hand," I truthfully announce:
(G) Either I have a gift in my right hand and you don't know it, or I have gifts in both hands and you don't know I have one in my left hand.

The Puzzle of the Gifts

With my hands behind my back, I walk into a room where a friend \mathbf{F} is sitting. \mathbf{F} did not see what if anything I put in my hands, and I know this. In fact, I have gifts for \mathbf{F} in both hands. Instead of asking \mathbf{F} to "pick a hand, any hand," I truthfully announce:
(G) Either I have a gift in my right hand and you don't know it, or I have gifts in both hands and you don't know I have one in my left hand.

F takes me to be an infallible source and therefore accepts G.

The Puzzle of the Gifts

With my hands behind my back, I walk into a room where a friend \mathbf{F} is sitting. \mathbf{F} did not see what if anything I put in my hands, and I know this. In fact, I have gifts for \mathbf{F} in both hands. Instead of asking \mathbf{F} to "pick a hand, any hand," I truthfully announce:
(G) Either I have a gift in my right hand and you don't know it, or I have gifts in both hands and you don't know I have one in my left hand.

F takes me to be an infallible source and therefore accepts G.

1. After my announcement, does \mathbf{F} know if I have a gift in my left/right/both hand(s)?

The Puzzle of the Gifts

With my hands behind my back, I walk into a room where a friend \mathbf{F} is sitting. \mathbf{F} did not see what if anything I put in my hands, and I know this. In fact, I have gifts for \mathbf{F} in both hands. Instead of asking \mathbf{F} to "pick a hand, any hand," I truthfully announce:
(G) Either I have a gift in my right hand and you don't know it, or I have gifts in both hands and you don't know I have one in my left hand.

F takes me to be an infallible source and therefore accepts G.

1. After my announcement, does \mathbf{F} know if I have a gift in my left/right/both hand(s)?
2. After my announcement, is G true?

The Puzzle of the Gifts

With my hands behind my back, I walk into a room where a friend \mathbf{F} is sitting. \mathbf{F} did not see what if anything I put in my hands, and I know this. In fact, I have gifts for \mathbf{F} in both hands. Instead of asking \mathbf{F} to "pick a hand, any hand," I truthfully announce:
(G) Either I have a gift in my right hand and you don't know it, or I have gifts in both hands and you don't know I have one in my left hand.

F takes me to be an infallible source and therefore accepts G.

1. After my announcement, does \mathbf{F} know if I have a gift in my left/right/both hand(s)?
2. After my announcement, is G true?
3. After my announcement, does \mathbf{F} know G ?

The Puzzle of the Gifts

With my hands behind my back, I walk into a room where a friend \mathbf{F} is sitting. \mathbf{F} did not see what if anything I put in my hands, and I know this. In fact, I have gifts for \mathbf{F} in both hands. Instead of asking \mathbf{F} to "pick a hand, any hand," I truthfully announce:
(G) Either I have a gift in my right hand and you don't know it, or I have gifts in both hands and you don't know I have one in my left hand.

F takes me to be an infallible source and therefore accepts G.

1. After my announcement, does \mathbf{F} know if I have a gift in my left/right/both hand(s)?
2. After my announcement, is G true?
3. After my announcement, does \mathbf{F} know \mathbf{G} ?
4. If 'yes' to 2 , what happens if I announce G again?

Let / be 'a gift is in the left hand' and r be 'a gift is in the right'.

Let / be 'a gift is in the left hand' and r be 'a gift is in the right'.

We can translate G into the language of epistemic logic as

Let / be 'a gift is in the left hand' and r be 'a gift is in the right'.

We can translate G into the language of epistemic logic as
$(G)\left(r \wedge \neg K_{F} r\right) \vee\left(I \wedge r \wedge \neg K_{F} /\right)$.

Let / be 'a gift is in the left hand' and r be 'a gift is in the right'.

We can translate G into the language of epistemic logic as
(G) $\left(r \wedge \neg K_{\mathbf{F}} r\right) \vee\left(I \wedge r \wedge \neg K_{\mathbf{F}} I\right)$.

Note: $\mathcal{M}, w_{1} \vDash G$

Let / be 'a gift is in the left hand' and r be 'a gift is in the right'.

We can translate G into the language of epistemic logic as
(G) $\left(r \wedge \neg K_{\mathbf{F}} r\right) \vee\left(I \wedge r \wedge \neg K_{\mathbf{F}} I\right)$.

Note: $\mathcal{M}, w_{1} \vDash G$ and $\mathcal{M}, w_{2} \vDash G$.

Let / be 'a gift is in the left hand' and r be 'a gift is in the right'.

We can translate G into the language of epistemic logic as
$(G)\left(r \wedge \neg K_{\mathbf{F}} r\right) \vee\left(I \wedge r \wedge \neg K_{\mathbf{F}} I\right)$.
Note: $\mathcal{M}, w_{1} \vDash G, \mathcal{M}, w_{2} \vDash G$, but $\mathcal{M}, w_{3} \not \vDash G, \mathcal{M}, w_{4} \not \models G$.

What happens if I truthfully announce G, and \mathbf{F} knows that I am an infallible source of information?

What happens if I truthfully announce G, and \mathbf{F} knows that I am an infallible source of information?

What happens if I truthfully announce G, and \mathbf{F} knows that I am an infallible source of information?

(G) $\left(r \wedge \neg K_{F} r\right) \vee\left(I \wedge r \wedge \neg K_{F} I\right)$.

Questions. After my announcement of G...

What happens if I truthfully announce G, and \mathbf{F} knows that I am an infallible source of information?

$(G)\left(r \wedge \neg K_{\mathbf{F}} r\right) \vee\left(I \wedge r \wedge \neg K_{\mathbf{F}} I\right)$.
Questions. After my announcement of G...

1. Does \mathbf{F} know if I have a gift in my left/right/both hand(s)?

What happens if I truthfully announce G, and \mathbf{F} knows that I am an infallible source of information?

(G) $\left(r \wedge \neg K_{F} r\right) \vee\left(I \wedge r \wedge \neg K_{F} I\right)$.

Questions. After my announcement of G...

1. Does \mathbf{F} know if I have a gift in my left/right/both hand(s)?
2. Is G still true?

What happens if I truthfully announce G, and \mathbf{F} knows that I am an infallible source of information?

(G) $\left(r \wedge \neg K_{F} r\right) \vee\left(I \wedge r \wedge \neg K_{F} I\right)$.

Questions. After my announcement of G...

1. Does \mathbf{F} know if I have a gift in my left/right/both hand(s)?
2. Is G still true? Yes.

What happens if I truthfully announce G, and \mathbf{F} knows that I am an infallible source of information?

(G) $\left(r \wedge \neg K_{\mathbf{F}} r\right) \vee\left(I \wedge r \wedge \neg K_{\mathbf{F}} /\right)$.

Questions. After my announcement of G...

1. Does \mathbf{F} know if I have a gift in my left/right/both hand(s)?
2. Is G still true? Yes.

What happens if I truthfully announce G, and \mathbf{F} knows that I am an infallible source of information?

(G) $\left(r \wedge \neg K_{\mathbf{F}} r\right) \vee\left(I \wedge r \wedge \neg K_{\mathbf{F}} I\right)$.

Questions. After my announcement of G...

1. Does \mathbf{F} know if I have a gift in my left/right/both hand(s)?
2. Is G still true? Yes. $\mathcal{M}_{\mid G}, w_{1} \vDash G$.

What happens if I truthfully announce G, and \mathbf{F} knows that I am an infallible source of information?

(G) $\left(r \wedge \neg K_{\mathbf{F}} r\right) \vee\left(I \wedge r \wedge \neg K_{\mathbf{F}} I\right)$.

Questions. After my announcement of G...

1. Does \mathbf{F} know if I have a gift in my left/right/both hand(s)?
2. Is G still true? Yes. $\mathcal{M}, w_{1} \vDash\langle!G\rangle G$.

What happens if I truthfully announce G, and \mathbf{F} knows that I am an infallible source of information?

$(G)\left(r \wedge \neg K_{\mathbf{F}} r\right) \vee\left(I \wedge r \wedge \neg K_{F} I\right)$.
Questions. After my announcement of G...

1. Does \mathbf{F} know if I have a gift in my left/right/both hand(s)?
2. Is G still true? Yes. $\mathcal{M}, w_{1} \vDash\langle!G\rangle G$.
3. Does \mathbf{F} now know G ?

What happens if I truthfully announce G, and \mathbf{F} knows that I am an infallible source of information?

(G) $\left(r \wedge \neg K_{\mathbf{F}} r\right) \vee\left(I \wedge r \wedge \neg K_{\mathbf{F}} I\right)$.

Questions. After my announcement of G...

1. Does \mathbf{F} know if I have a gift in my left/right/both hand(s)?
2. Is G still true? Yes. $\mathcal{M}, w_{1} \vDash\langle!G\rangle G$.
3. Does \mathbf{F} now know G ? No!

What happens if I truthfully announce G, and \mathbf{F} knows that I am an infallible source of information?

(G) $\left(r \wedge \neg K_{\mathbf{F}} r\right) \vee\left(I \wedge r \wedge \neg K_{\mathbf{F}} I\right)$.

Questions. After my announcement of G...

1. Does \mathbf{F} know if I have a gift in my left/right/both hand(s)?
2. Is G still true? Yes. $\mathcal{M}, w_{1} \vDash\langle!G\rangle G$.
3. Does \mathbf{F} now know G ? No! $\mathcal{M}_{\mid G}, w_{1} \vDash \neg K_{\mathbf{F}} G$.

What happens if I truthfully announce G, and \mathbf{F} knows that I am an infallible source of information?

(G) $\left(r \wedge \neg K_{\mathbf{F}} r\right) \vee\left(I \wedge r \wedge \neg K_{\mathbf{F}} I\right)$.

Questions. After my announcement of G...

1. Does \mathbf{F} know if I have a gift in my left/right/both hand(s)?
2. Is G still true? Yes. $\mathcal{M}, w_{1} \vDash\langle!G\rangle G$.
3. Does \mathbf{F} now know G ? No! $\mathcal{M}, w_{1} \vDash\langle!G\rangle \neg K_{\mathbf{F}} G$.

What happens if I truthfully announce G, and \mathbf{F} knows that I am an infallible source of information?

(G) $\left(r \wedge \neg K_{\mathbf{F}} r\right) \vee\left(I \wedge r \wedge \neg K_{\mathbf{F}} /\right)$.

After my announcement of G...

1. Does \mathbf{F} know if I have a gift in my left/right/both hand(s)?
2. Is G still true? Yes. $\mathcal{M}, w_{1} \vDash\langle!G\rangle G$.
3. Does \mathbf{F} now know G ? No! $\mathcal{M}, w_{1} \vDash\langle!G\rangle \neg K_{\mathbf{F}} G$.

Questions. After my announcement of G...
2. Is G still true? Yes. $\mathcal{M}, w_{1} \vDash\langle!G\rangle G$.
3. Does \mathbf{F} now know G ? No. $\mathcal{M}, w_{1} \vDash\langle!G\rangle \neg K_{\mathbf{F}} G$.

Questions. After my announcement of G...
2. Is G still true? Yes. $\mathcal{M}, w_{1} \vDash\langle!G\rangle G$.
3. Does \mathbf{F} now know G ? No. $\mathcal{M}, w_{1} \vDash\langle!G\rangle \neg K_{\mathbf{F}} G$.

Given 2 and 3, the following is not valid:

$$
[!\varphi] \varphi \rightarrow[!\varphi] K \varphi
$$

Questions. After my announcement of G...
2. Is G still true? Yes. $\mathcal{M}, w_{1} \vDash\langle!G\rangle G$.
3. Does \mathbf{F} now know G ? No. $\mathcal{M}, w_{1} \vDash\langle!G\rangle \neg K_{\mathbf{F}} G$.

Given 2 and 3, the following is not valid:

$$
[!\varphi] \varphi \rightarrow[!\varphi] K \varphi
$$

There are formulas φ such that even if φ remains true after being truly announced by a source whom you know to be infallible, you can fail to know that φ is still true.

Questions. After my announcement of G...
2. Is G still true? Yes. $\mathcal{M}, w_{1} \vDash\langle!G\rangle G$.
3. Does \mathbf{F} now know G ? No. $\mathcal{M}, w_{1} \vDash\langle!G\rangle \neg K_{\mathbf{F}} G$.

It follows from the answers to 2 and 3 that
$\mathcal{M}, w_{1} \vDash\langle!G\rangle\left(G \wedge \neg K_{F} G\right)$.

Questions. After my announcement of G...
2. Is G still true? Yes. $\mathcal{M}, w_{1} \vDash\langle!G\rangle G$.
3. Does \mathbf{F} now know G ? No. $\mathcal{M}, w_{1} \vDash\langle!G\rangle \neg K_{\mathbf{F}} G$.

It follows from the answers to 2 and 3 that
$\mathcal{M}, w_{1} \vDash\langle!G\rangle\left(G \wedge \neg K_{F} G\right)$.
Let's check that G and $\left(G \wedge \neg K_{F} G\right)$ are true at the same states in our original model \mathcal{M}, namely w_{1} and w_{2}.

Let / be 'a gift is in the left hand' and r be 'a gift is in the right'.

We can translate G into the language of epistemic logic as
(G) $\left(r \wedge \neg K_{\mathbf{F}} r\right) \vee\left(I \wedge r \wedge \neg K_{\mathbf{F}} I\right)$.

Note: $\mathcal{M}, w_{1} \vDash G \wedge \neg K_{F} G$ and $\mathcal{M}, w_{2} \vDash G \wedge \neg K_{F} G$.

After my announcement of $G \ldots$
2. Is G still true? Yes. $\mathcal{M}, w_{1} \vDash\langle!G\rangle G$.
3. Does \mathbf{F} now know G ? No. $\mathcal{M}, w_{1} \vDash\langle!G\rangle \neg K_{\mathbf{F}} G$.

It follows from the answers to 2 and 3 that $\mathcal{M}, w_{1} \vDash\langle!G\rangle\left(G \wedge \neg K_{F} G\right)$.

We've seen that G and $\left(G \wedge \neg K_{F} G\right)$ are true at the same states in $\mathcal{M}: w_{1}$ and w_{2}.

After my announcement of $G \ldots$
2. Is G still true? Yes. $\mathcal{M}, w_{1} \vDash\langle!G\rangle G$.
3. Does \mathbf{F} now know G ? No. $\mathcal{M}, w_{1} \vDash\langle!G\rangle \neg K_{\mathbf{F}} G$.

It follows from the answers to 2 and 3 that $\mathcal{M}, w_{1} \vDash\langle!G\rangle\left(G \wedge \neg K_{F} G\right)$.

We've seen that G and $\left(G \wedge \neg K_{F} G\right)$ are true at the same states in $\mathcal{M}: w_{1}$ and w_{2}. Hence $\mathcal{M}, w_{1} \vDash\left\langle!G \wedge \neg K_{F} G\right\rangle\left(G \wedge \neg K_{F} G\right)$.

After my announcement of $G \ldots$
2. Is G still true? Yes. $\mathcal{M}, w_{1} \vDash\langle!G\rangle G$.
3. Does \mathbf{F} now know G ? No. $\mathcal{M}, w_{1} \vDash\langle!G\rangle \neg K_{\mathbf{F}} G$.

It follows from the answers to 2 and 3 that $\mathcal{M}, w_{1} \vDash\langle!G\rangle\left(G \wedge \neg K_{F} G\right)$.

We've seen that G and $\left(G \wedge \neg K_{F} G\right)$ are true at the same states in $\mathcal{M}: w_{1}$ and w_{2}. Hence $\mathcal{M}, w_{1} \vDash\left\langle!G \wedge \neg K_{F} G\right\rangle\left(G \wedge \neg K_{F} G\right)$.
$[!\varphi \wedge \neg K \varphi] \neg(\varphi \wedge \neg K \varphi)$ is not valid for all φ.

After my announcement of $G \ldots$
2. Is G still true? Yes. $\mathcal{M}, w_{1} \vDash\langle!G\rangle G$.
3. Does \mathbf{F} now know G ? No. $\mathcal{M}, w_{1} \vDash\langle!G\rangle \neg K_{\mathbf{F}} G$.

It follows from the answers to 2 and 3 that $\mathcal{M}, w_{1} \vDash\langle!G\rangle\left(G \wedge \neg K_{F} G\right)$.

We've seen that G and $\left(G \wedge \neg K_{F} G\right)$ are true at the same states in $\mathcal{M}: w_{1}$ and w_{2}. Hence $\mathcal{M}, w_{1} \vDash\left\langle!G \wedge \neg K_{F} G\right\rangle\left(G \wedge \neg K_{F} G\right)$.
$[!\varphi \wedge \neg K \varphi] \neg(\varphi \wedge \neg K \varphi)$ is not valid for all φ.
Moorean utterances are not always self-refuting.

What's Wrong with Moore Sentences?

Is there a φ such that if you receive the true information (from a source you know to be infallible) that "you don't know it, but φ, ," it can remain true afterward that you don't know it, but φ ?

If you know that I am well informed and if I address the words ... to you, these words have a curious effect which may perhaps be called anti-performatory. You may come to know that what I say was true, but saying it in so many words has the effect of making what is being said false. (68-69)
J. Hintikka 1962. Knowledge and Belief.

Surprisingly, this is not always the case, as we just showed.

