Reasoning about Knowledge and Beliefs
 Lecture 8

Eric Pacuit

University of Maryland, College Park
pacuit.org
epacuit@umd.edu

October 7, 2013

Fitch's Paradox

Fitch (1963) derived an unexpected consequence from the thesis, advocated by some anti-realists, that every truth is knowable:

Fitch's Paradox

Fitch (1963) derived an unexpected consequence from the thesis, advocated by some anti-realists, that every truth is knowable:
$(\mathrm{VT}) q \rightarrow \diamond K q$,
where \diamond is a possibility operator (more on this later).

Fitch's Paradox

Fitch (1963) derived an unexpected consequence from the thesis, advocated by some anti-realists, that every truth is knowable:
$(\mathrm{V} \mathrm{T}) q \rightarrow \diamond K q$,
where \diamond is a possibility operator (more on this later).
Fitch make two modest assumptions for $K, K \varphi \rightarrow \varphi(\mathrm{~T})$ and $K(\varphi \wedge \psi) \rightarrow(K \varphi \wedge K \psi)(\mathrm{M})$, and two modest assumptions for \diamond :

Fitch's Paradox

Fitch (1963) derived an unexpected consequence from the thesis, advocated by some anti-realists, that every truth is knowable:
$(\mathrm{V} \mathrm{T}) q \rightarrow \diamond K q$,
where \diamond is a possibility operator (more on this later).
Fitch make two modest assumptions for $K, K \varphi \rightarrow \varphi(\mathrm{~T})$ and $K(\varphi \wedge \psi) \rightarrow(K \varphi \wedge K \psi)(\mathrm{M})$, and two modest assumptions for \diamond :

- \diamond is the dual of \square for necessity, so $\neg \diamond \varphi$ follows from $\square \neg \varphi$.

Fitch's Paradox

Fitch (1963) derived an unexpected consequence from the thesis, advocated by some anti-realists, that every truth is knowable:
$(\mathrm{V} \mathrm{T}) q \rightarrow \diamond K q$,
where \diamond is a possibility operator (more on this later).
Fitch make two modest assumptions for $K, K \varphi \rightarrow \varphi(\mathrm{~T})$ and $K(\varphi \wedge \psi) \rightarrow(K \varphi \wedge K \psi)(\mathrm{M})$, and two modest assumptions for \diamond :

- \diamond is the dual of \square for necessity, so $\neg \diamond \varphi$ follows from $\square \neg \varphi$.
- \square obeys the rule of Necessitation: if φ is a theorem, so is $\square \varphi$.

Fitch's Paradox

For an arbitrary p, consider the following instance of (VT):
(0) $(p \wedge \neg K p) \rightarrow \diamond K(p \wedge \neg K p)$

Fitch's Paradox

For an arbitrary p, consider the following instance of (VT):
(0) $(p \wedge \neg K p) \rightarrow \diamond K(p \wedge \neg K p)$

Here is the proof for Fitch's Paradox:

Fitch's Paradox

For an arbitrary p, consider the following instance of (VT):
(0) $(p \wedge \neg K p) \rightarrow \diamond K(p \wedge \neg K p)$

Here is the proof for Fitch's Paradox:
(1) $K(p \wedge \neg K p) \rightarrow(K p \wedge K \neg K p) \quad$ instance of M axiom

Fitch's Paradox

For an arbitrary p, consider the following instance of (VT):
(0) $(p \wedge \neg K p) \rightarrow \diamond K(p \wedge \neg K p)$

Here is the proof for Fitch's Paradox:
(1) $K(p \wedge \neg K p) \rightarrow(K p \wedge K \neg K p)$ instance of M axiom
(2) $K \neg K p \rightarrow \neg K p \quad$ instance of T axiom

Fitch's Paradox

For an arbitrary p, consider the following instance of (VT):
(0) $(p \wedge \neg K p) \rightarrow \diamond K(p \wedge \neg K p)$

Here is the proof for Fitch's Paradox:
(1) $K(p \wedge \neg K p) \rightarrow(K p \wedge K \neg K p)$ instance of M axiom
(2) $K \neg K p \rightarrow \neg K p \quad$ instance of T axiom
(3) $K(p \wedge \neg K p) \rightarrow(K p \wedge \neg K p) \quad$ from (1) and (2) by PL

Fitch's Paradox

For an arbitrary p, consider the following instance of (VT):
(0) $(p \wedge \neg K p) \rightarrow \diamond K(p \wedge \neg K p)$

Here is the proof for Fitch's Paradox:
(1) $K(p \wedge \neg K p) \rightarrow(K p \wedge K \neg K p)$ instance of M axiom
(2) $K \neg K p \rightarrow \neg K p \quad$ instance of T axiom
(3) $K(p \wedge \neg K p) \rightarrow(K p \wedge \neg K p) \quad$ from (1) and (2) by PL
(4) $\neg K(p \wedge \neg K p) \quad$ from (3) by PL

Fitch's Paradox

For an arbitrary p, consider the following instance of (VT):
(0) $(p \wedge \neg K p) \rightarrow \diamond K(p \wedge \neg K p)$

Here is the proof for Fitch's Paradox:
(1) $K(p \wedge \neg K p) \rightarrow(K p \wedge K \neg K p)$ instance of M axiom
(2) $K \neg K p \rightarrow \neg K p \quad$ instance of T axiom
(3) $K(p \wedge \neg K p) \rightarrow(K p \wedge \neg K p) \quad$ from (1) and (2) by PL
(4) $\neg K(p \wedge \neg K p) \quad$ from (3) by PL
(5) $\square \neg K(p \wedge \neg K p)$ from (4) by \square-Necessitation

Fitch's Paradox

For an arbitrary p, consider the following instance of (VT):
(0) $(p \wedge \neg K p) \rightarrow \diamond K(p \wedge \neg K p)$

Here is the proof for Fitch's Paradox:
(1) $K(p \wedge \neg K p) \rightarrow(K p \wedge K \neg K p)$ instance of M axiom
(2) $K \neg K p \rightarrow \neg K p \quad$ instance of T axiom
(3) $K(p \wedge \neg K p) \rightarrow(K p \wedge \neg K p) \quad$ from (1) and (2) by PL
(4) $\neg K(p \wedge \neg K p)$ from (3) by PL
(5) $\square \neg K(p \wedge \neg K p)$ from (4) by \square-Necessitation
(6) $\neg \diamond K(p \wedge \neg K p) \quad$ from (5) by $\square-\diamond$ Duality

Fitch's Paradox

For an arbitrary p, consider the following instance of (VT):
(0) $(p \wedge \neg K p) \rightarrow \diamond K(p \wedge \neg K p)$

Here is the proof for Fitch's Paradox:
(1) $K(p \wedge \neg K p) \rightarrow(K p \wedge K \neg K p)$ instance of M axiom
(2) $K \neg K p \rightarrow \neg K p \quad$ instance of T axiom
(3) $K(p \wedge \neg K p) \rightarrow(K p \wedge \neg K p) \quad$ from (1) and (2) by PL
(4) $\neg K(p \wedge \neg K p) \quad$ from (3) by PL
(5) $\square \neg K(p \wedge \neg K p)$ from (4) by \square-Necessitation
(6) $\neg \diamond K(p \wedge \neg K p) \quad$ from (5) by \square - \diamond Duality
(7) $\neg(p \wedge \neg K p)$ from (0) by PL

Fitch's Paradox

For an arbitrary p, consider the following instance of (VT):
(0) $(p \wedge \neg K p) \rightarrow \diamond K(p \wedge \neg K p)$

Here is the proof for Fitch's Paradox:
(1) $K(p \wedge \neg K p) \rightarrow(K p \wedge K \neg K p)$ instance of M axiom
(2) $K \neg K p \rightarrow \neg K p \quad$ instance of T axiom
(3) $K(p \wedge \neg K p) \rightarrow(K p \wedge \neg K p) \quad$ from (1) and (2) by PL
(4) $\neg K(p \wedge \neg K p) \quad$ from (3) by PL
(5) $\square \neg K(p \wedge \neg K p)$ from (4) by \square-Necessitation
(6) $\neg \diamond K(p \wedge \neg K p) \quad$ from (5) by \square - \diamond Duality
(7) $\neg(p \wedge \neg K p)$ from (0) by PL
(8) $p \rightarrow K p \quad$ from (7) by classical PL

Fitch's Paradox

For an arbitrary p, consider the following instance of (VT):
(0) $(p \wedge \neg K p) \rightarrow \diamond K(p \wedge \neg K p)$

Here is the proof for Fitch's Paradox:
(1) $K(p \wedge \neg K p) \rightarrow(K p \wedge K \neg K p)$ instance of M axiom
(2) $K \neg K p \rightarrow \neg K p \quad$ instance of T axiom
(3) $K(p \wedge \neg K p) \rightarrow(K p \wedge \neg K p) \quad$ from (1) and (2) by PL
(4) $\neg K(p \wedge \neg K p) \quad$ from (3) by PL
(5) $\square \neg K(p \wedge \neg K p)$ from (4) by \square-Necessitation
(6) $\neg \diamond K(p \wedge \neg K p) \quad$ from (5) by \square - \diamond Duality
(7) $\neg(p \wedge \neg K p) \quad$ from (0) by PL
(8) $p \rightarrow K p \quad$ from (7) by classical PL

Since p was arbitrary, we have shown that every truth is known.

The Question

Fitch's Paradox leaves us with the question: what must we require in addition to the truth of φ to ensure the knowability of φ ?

The Question

Fitch's Paradox leaves us with the question: what must we require in addition to the truth of φ to ensure the knowability of φ ?

There is a fairly large literature on knowability and related issues. See, e.g.:
J. Salerno. 2009. New Essays on the Knowability Paradox, OUP
J. van Benthem. 2004. "What One May Come to Know," Analysis.
P. Balbiani et al. 2008. "'Knowable' as 'Known after an Announcement,"' Review of Symbolic Logic.

Dynamic Epistemic Logic

The key idea of dynamic epistemic logic is that we can represent changes in agents' epistemic states by transforming models.

Dynamic Epistemic Logic

The key idea of dynamic epistemic logic is that we can represent changes in agents' epistemic states by transforming models.

In the simplest case, we model an agent's acquisition of knowledge by the elimination of possibilities from an initial epistemic model.

The Dynamics of Knowledge
Finding out that φ

Example: College Park and Amsterdam

Recall the College Park agent who doesn't know whether it's raining in Amsterdam, whose epistemic state is represented by the model:

Example: College Park and Amsterdam

Recall the College Park agent who doesn't know whether it's raining in Amsterdam, whose epistemic state is represented by the model:

What happens when the Amsterdam agent calls the College Park agent on the phone and says, "It's raining in Amsterdam"?

Example: College Park and Amsterdam

Recall the College Park agent who doesn't know whether it's raining in Amsterdam, whose epistemic state is represented by the model:

What happens when the Amsterdam agent calls the College Park agent on the phone and says, "It's raining in Amsterdam"?

We model the change in b 's epistemic state by eliminating all epistemic possibilities in which it's not raining in Amsterdam.

Example: College Park and Amsterdam

Recall the College Park agent who doesn't know whether it's raining in Amsterdam, whose epistemic state is represented by the model:

What happens when the Amsterdam agent calls the College Park agent on the phone and says, "It's raining in Amsterdam"?

We model the change in b 's epistemic state by eliminating all epistemic possibilities in which it's not raining in Amsterdam.

Model Update

We can easily give a formal definition that captures the idea of knowledge acquisition as the elimination of possibilities.

Model Update

We can easily give a formal definition that captures the idea of knowledge acquisition as the elimination of possibilities.

Given $\mathcal{M}=\left\langle W,\left\{R_{a} \mid a \in \operatorname{Agt}\right\}, V\right\rangle$, the updated model $\mathcal{M}_{\mid \varphi}$ is obtained by deleting from \mathcal{M} all worlds in which φ was false.

Model Update

We can easily give a formal definition that captures the idea of knowledge acquisition as the elimination of possibilities.

Given $\mathcal{M}=\left\langle W,\left\{R_{a} \mid a \in \operatorname{Agt}\right\}, V\right\rangle$, the updated model $\mathcal{M}_{\mid \varphi}$ is obtained by deleting from \mathcal{M} all worlds in which φ was false.

Formally, $\mathcal{M}_{\mid \varphi}=\left\langle W_{\mid \varphi},\left\{R_{a_{\mid \varphi}} \mid a \in \mathrm{Agt}\right\}, V_{\mid \varphi}\right\rangle$ is the model s.th.:

$$
W_{\mid \varphi}=\{v \in W \mid \mathcal{M}, v \vDash \varphi\} ;
$$

Model Update

We can easily give a formal definition that captures the idea of knowledge acquisition as the elimination of possibilities.

Given $\mathcal{M}=\left\langle W,\left\{R_{a} \mid a \in \operatorname{Agt}\right\}, V\right\rangle$, the updated model $\mathcal{M}_{\mid \varphi}$ is obtained by deleting from \mathcal{M} all worlds in which φ was false.

Formally, $\mathcal{M}_{\mid \varphi}=\left\langle W_{\mid \varphi},\left\{R_{a_{\mid \varphi}} \mid a \in \mathrm{Agt}\right\}, V_{\mid \varphi}\right\rangle$ is the model s.th.:

$$
W_{\mid \varphi}=\{v \in W \mid \mathcal{M}, v \vDash \varphi\} ;
$$

$R_{a_{\mid \varphi}}$ is the restriction of R_{a} to $W_{\mid \varphi}$;

Model Update

We can easily give a formal definition that captures the idea of knowledge acquisition as the elimination of possibilities.

Given $\mathcal{M}=\left\langle W,\left\{R_{a} \mid a \in \operatorname{Agt}\right\}, V\right\rangle$, the updated model $\mathcal{M}_{\mid \varphi}$ is obtained by deleting from \mathcal{M} all worlds in which φ was false.

Formally, $\mathcal{M}_{\mid \varphi}=\left\langle W_{\mid \varphi},\left\{R_{a_{\mid \varphi}} \mid a \in \mathrm{Agt}\right\}, V_{\mid \varphi}\right\rangle$ is the model s.th.:

$$
W_{\mid \varphi}=\{v \in W \mid \mathcal{M}, v \vDash \varphi\}
$$

$R_{a \mid \varphi}$ is the restriction of R_{a} to $W_{\mid \varphi}$;
$V_{\mid \varphi}(p)$ is the intersection of $V(p)$ and $W_{\mid \varphi}$.

Model Update

We can easily give a formal definition that captures the idea of knowledge acquisition as the elimination of possibilities.

Given $\mathcal{M}=\left\langle W,\left\{R_{a} \mid a \in \operatorname{Agt}\right\}, V\right\rangle$, the updated model $\mathcal{M}_{\mid \varphi}$ is obtained by deleting from \mathcal{M} all worlds in which φ was false.

Formally, $\mathcal{M}_{\mid \varphi}=\left\langle W_{\mid \varphi},\left\{R_{a_{\mid \varphi}} \mid a \in \mathrm{Agt}\right\}, V_{\mid \varphi}\right\rangle$ is the model s.th.:

$$
W_{\mid \varphi}=\{v \in W \mid \mathcal{M}, v \vDash \varphi\}
$$

$R_{a_{\mid \varphi}}$ is the restriction of R_{a} to $W_{\mid \varphi}$;
$V_{\mid \varphi}(p)$ is the intersection of $V(p)$ and $W_{\mid \varphi}$.
In the single-agent case, this models the agent learning φ. In the multi-agent case, this models all agents publicly learning φ.

Public Announcement Logic

One of the big ideas of dynamic epistemic logic is to add to our formal language operators that can describe the kinds of model updates that we just saw for the College Park and Amsterdam example.

Public Announcement Logic

One of the big ideas of dynamic epistemic logic is to add to our formal language operators that can describe the kinds of model updates that we just saw for the College Park and Amsterdam example.

The language of Public Announcement Logic (PAL) is given by:

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)\left|K_{a} \varphi\right|[!\varphi] \varphi
$$

Public Announcement Logic

One of the big ideas of dynamic epistemic logic is to add to our formal language operators that can describe the kinds of model updates that we just saw for the College Park and Amsterdam example.

The language of Public Announcement Logic (PAL) is given by:

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)\left|K_{a} \varphi\right|[!\varphi] \varphi
$$

Read $[!\varphi] \psi$ as "after (every) true announcement of φ, ψ."

Public Announcement Logic

One of the big ideas of dynamic epistemic logic is to add to our formal language operators that can describe the kinds of model updates that we just saw for the College Park and Amsterdam example.

The language of Public Announcement Logic (PAL) is given by:

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)\left|K_{a} \varphi\right|[!\varphi] \varphi
$$

Read $[!\varphi] \psi$ as "after (every) true announcement of φ, ψ."
$\operatorname{Read}\langle!\varphi\rangle \psi:=\neg[!\varphi] \neg \psi$ as "after a true announcement of φ, ψ."

Public Announcement Logic

Read $[!\varphi] \psi$ as "after (every) true announcement of φ, ψ."
$\operatorname{Read}\langle!\varphi\rangle \psi:=\neg[!\varphi] \neg \psi$ as "after a true announcement of φ, ψ."

The truth clause for the dynamic operator $[!\varphi]$ is:

Public Announcement Logic

Read $[!\varphi] \psi$ as "after (every) true announcement of φ, ψ."
$\operatorname{Read}\langle!\varphi\rangle \psi:=\neg[!\varphi] \neg \psi$ as "after a true announcement of φ, ψ."

The truth clause for the dynamic operator $[!\varphi]$ is:

- $\mathcal{M}, w \vDash[!\varphi] \psi$ iff $\mathcal{M}, w \vDash \varphi$ implies $\mathcal{M}_{\mid \varphi}, w \vDash \psi$.

Public Announcement Logic

Read $[!\varphi] \psi$ as "after (every) true announcement of φ, ψ."
$\operatorname{Read}\langle!\varphi\rangle \psi:=\neg[!\varphi] \neg \psi$ as "after a true announcement of φ, ψ."

The truth clause for the dynamic operator $[!\varphi]$ is:

- $\mathcal{M}, w \vDash[!\varphi] \psi$ iff $\mathcal{M}, w \vDash \varphi$ implies $\mathcal{M}_{\mid \varphi}, w \vDash \psi$.

So if φ is false, $[!\varphi] \psi$ is vacuously true.

Public Announcement Logic

Read $[!\varphi] \psi$ as "after (every) true announcement of φ, ψ."
$\operatorname{Read}\langle!\varphi\rangle \psi:=\neg[!\varphi] \neg \psi$ as "after a true announcement of φ, ψ."

The truth clause for the dynamic operator $[!\varphi]$ is:

- $\mathcal{M}, w \vDash[!\varphi] \psi$ iff $\mathcal{M}, w \vDash \varphi$ implies $\mathcal{M}_{\mid \varphi}, w \vDash \psi$.

So if φ is false, $[!\varphi] \psi$ is vacuously true. Here is the $\langle!\varphi\rangle$ clause:

Public Announcement Logic

Read $[!\varphi] \psi$ as "after (every) true announcement of φ, ψ."
$\operatorname{Read}\langle!\varphi\rangle \psi:=\neg[!\varphi] \neg \psi$ as "after a true announcement of φ, ψ."

The truth clause for the dynamic operator $[!\varphi]$ is:

- $\mathcal{M}, w \vDash[!\varphi] \psi$ iff $\mathcal{M}, w \vDash \varphi$ implies $\mathcal{M}_{\mid \varphi}, w \vDash \psi$.

So if φ is false, $[!\varphi] \psi$ is vacuously true. Here is the $\langle!\varphi\rangle$ clause:

- $\mathcal{M}, w \vDash\langle!\varphi\rangle \psi$ iff $\mathcal{M}, w \vDash \varphi$ and $\mathcal{M}_{\mid \varphi}, w \vDash \psi$.

Public Announcement Logic

Read $[!\varphi] \psi$ as "after (every) true announcement of φ, ψ."
Read $\langle!\varphi\rangle \psi:=\neg[!\varphi] \neg \psi$ as "after a true announcement of φ, ψ."

The truth clause for the dynamic operator $[!\varphi]$ is:

- $\mathcal{M}, w \vDash[!\varphi] \psi$ iff $\mathcal{M}, w \vDash \varphi$ implies $\mathcal{M}_{\mid \varphi}, w \vDash \psi$.

So if φ is false, $[!\varphi] \psi$ is vacuously true. Here is the $\langle!\varphi\rangle$ clause:

- $\mathcal{M}, w \vDash\langle!\varphi\rangle \psi$ iff $\mathcal{M}, w \vDash \varphi$ and $\mathcal{M}_{\mid \varphi}, w \vDash \psi$.

Big Idea: we evaluate $[!\varphi] \psi$ and $\langle!\varphi\rangle \psi$ not by looking at other worlds in the same model, but rather by looking at a new model.

Public Announcement Logic

Suppose $\mathcal{M}=\left\langle W,\left\{\sim_{i}\right\}_{i \in \mathcal{A}},\left\{\preceq_{i}\right\}_{i \in \mathcal{A}}, V\right\rangle$ is a multi-agent Kripke Model

$$
\mathcal{M}, w \models[\psi] \varphi \text { iff } \mathcal{M}, w \models \psi \text { implies }\left.\mathcal{M}\right|_{\psi}, w \models \varphi
$$

where $\left.\mathcal{M}\right|_{\psi}=\left\langle W^{\prime},\left\{\sim_{i}^{\prime}\right\}_{i \in \mathcal{A}},\left\{\preceq_{i}^{\prime}\right\}_{i \in \mathcal{A}}, V^{\prime}\right\rangle$ with

- $W^{\prime}=W \cap\{w \mid \mathcal{M}, w \models \psi\}$
- For each $i, \sim_{i}^{\prime}=\sim_{i} \cap\left(W^{\prime} \times W^{\prime}\right)$
- For each $i, \preceq_{i}^{\prime}=\preceq_{i} \cap\left(W^{\prime} \times W^{\prime}\right)$
- for all $p \in \mathrm{At}, V^{\prime}(p)=V(p) \cap W^{\prime}$

Public Announcement Logic

$$
[\psi] p \quad \leftrightarrow \quad(\psi \rightarrow p)
$$

Public Announcement Logic

$$
\begin{array}{rll}
{[\psi] p} & \leftrightarrow & (\psi \rightarrow p) \\
{[\psi] \neg \varphi} & \leftrightarrow & (\psi \rightarrow \neg[\psi] \varphi)
\end{array}
$$

Public Announcement Logic

$$
\begin{array}{rll}
{[\psi] p} & \leftrightarrow & (\psi \rightarrow p) \\
{[\psi] \neg \varphi} & \leftrightarrow & (\psi \rightarrow \neg[\psi] \varphi) \\
{[\psi](\varphi \wedge \chi)} & \leftrightarrow & ([\psi] \varphi \wedge[\psi] \chi)
\end{array}
$$

Public Announcement Logic

$$
\begin{array}{rll}
{[\psi] p} & \leftrightarrow & (\psi \rightarrow p) \\
{[\psi] \neg \varphi} & \leftrightarrow & (\psi \rightarrow \neg[\psi] \varphi) \\
{[\psi](\varphi \wedge \chi)} & \leftrightarrow([\psi] \varphi \wedge[\psi] \chi) \\
{[\psi][\varphi] \chi} & \leftrightarrow[\psi \wedge[\psi] \varphi] \chi
\end{array}
$$

Public Announcement Logic

$$
\begin{aligned}
{[\psi] p } & \leftrightarrow(\psi \rightarrow p) \\
{[\psi] \neg \varphi } & \leftrightarrow(\psi \rightarrow \neg[\psi] \varphi) \\
{[\psi](\varphi \wedge \chi) } & \leftrightarrow([\psi] \varphi \wedge[\psi] \chi) \\
{[\psi][\varphi] \chi } & \leftrightarrow[\psi \wedge[\psi] \varphi] \chi \\
{[\psi] K_{i} \varphi } & \leftrightarrow\left(\psi \rightarrow K_{i}(\psi \rightarrow[\psi] \varphi)\right)
\end{aligned}
$$

Public Announcement Logic

$$
\begin{aligned}
{[\psi] p } & \leftrightarrow(\psi \rightarrow p) \\
{[\psi] \neg \varphi } & \leftrightarrow(\psi \rightarrow \neg[\psi] \varphi) \\
{[\psi](\varphi \wedge \chi) } & \leftrightarrow([\psi] \varphi \wedge[\psi] \chi) \\
{[\psi][\varphi] \chi } & \leftrightarrow[\psi \wedge[\psi] \varphi] \chi \\
{[\psi] K_{i} \varphi } & \leftrightarrow\left(\psi \rightarrow K_{i}(\psi \rightarrow[\psi] \varphi)\right)
\end{aligned}
$$

Theorem Every formula of Public Announcement Logic is equivalent to a formula of Epistemic Logic.

- [q] $K q$
- $[q] K q$
- $K p \rightarrow[q] K p$
- $[q] K q$
- $K p \rightarrow[q] K p$
- $B \varphi \rightarrow[\psi] B \varphi$
- $[q] K q$
- $K p \rightarrow[q] K p$
- $B \varphi \rightarrow[\psi] B \varphi$

- $[q] K q$
- $K p \rightarrow[q] K p$
- $B \varphi \rightarrow[\psi] B \varphi$

- $[\varphi] \varphi$

Public Announcement vs. Conditional Belief

Are $[\varphi] B \psi$ and $B^{\varphi} \psi$ different?

Public Announcement vs. Conditional Belief

Are $[\varphi] B \psi$ and $B^{\varphi} \psi$ different? Yes!

Public Announcement vs. Conditional Belief

Are $[\varphi] B \psi$ and $B^{\varphi} \psi$ different? Yes!

Public Announcement vs. Conditional Belief

Are $[\varphi] B \psi$ and $B^{\varphi} \psi$ different? Yes!

- $w_{1} \models B_{1} B_{2} q$

Public Announcement vs. Conditional Belief

Are $[\varphi] B \psi$ and $B^{\varphi} \psi$ different? Yes!

- $w_{1} \models B_{1} B_{2} q$
- $w_{1} \models B_{1}^{p} B_{2} q$

Public Announcement vs. Conditional Belief

Are $[\varphi] B \psi$ and $B^{\varphi} \psi$ different? Yes!

- $w_{1} \models B_{1} B_{2} q$
- $w_{1} \models B_{1}^{p} B_{2} q$
- $w_{1} \models[p] \neg B_{1} B_{2} q$

Public Announcement vs. Conditional Belief

Are $[\varphi] B \psi$ and $B^{\varphi} \psi$ different? Yes!

- $w_{1} \models B_{1} B_{2} q$
- $w_{1} \models B_{1}^{p} B_{2} q$
- $w_{1} \models[p] \neg B_{1} B_{2} q$
- More generally, $B_{i}^{p}\left(p \wedge \neg K_{i} p\right)$ is satisfiable but $[p] B_{i}\left(p \wedge \neg K_{i} p\right)$ is not.

The Logic of Public Observation

- $[\varphi] K \psi \leftrightarrow(\varphi \rightarrow K(\varphi \rightarrow[\varphi] \psi))$

The Logic of Public Observation

- $[\varphi] K \psi \leftrightarrow(\varphi \rightarrow K(\varphi \rightarrow[\varphi] \psi))$
- $[\varphi][\preceq] \psi \leftrightarrow(\varphi \rightarrow[\preceq](\varphi \rightarrow[\varphi] \psi))$

The Logic of Public Observation

- $[\varphi] K \psi \leftrightarrow(\varphi \rightarrow K(\varphi \rightarrow[\varphi] \psi))$
- $[\varphi][\preceq] \psi \leftrightarrow(\varphi \rightarrow[\preceq](\varphi \rightarrow[\varphi] \psi))$
- Belief: $[\varphi] B \psi \nleftarrow(\varphi \rightarrow B(\varphi \rightarrow[\varphi] \psi))$

The Logic of Public Observation

- $[\varphi] K \psi \leftrightarrow(\varphi \rightarrow K(\varphi \rightarrow[\varphi] \psi))$
- $[\varphi][\preceq] \psi \leftrightarrow(\varphi \rightarrow[\preceq](\varphi \rightarrow[\varphi] \psi))$
- Belief: $[\varphi] B \psi \nless(\varphi \rightarrow B(\varphi \rightarrow[\varphi] \psi))$

$$
[\varphi] B \psi \leftrightarrow\left(\varphi \rightarrow B^{\varphi}[\varphi] \psi\right)
$$

The Logic of Public Observation

- $[\varphi] K \psi \leftrightarrow(\varphi \rightarrow K(\varphi \rightarrow[\varphi] \psi))$
- $[\varphi][\preceq] \psi \leftrightarrow(\varphi \rightarrow[\preceq](\varphi \rightarrow[\varphi] \psi))$
- Belief: $[\varphi] B \psi \nleftarrow(\varphi \rightarrow B(\varphi \rightarrow[\varphi] \psi))$

$$
\begin{aligned}
& {[\varphi] B \psi \leftrightarrow\left(\varphi \rightarrow B^{\varphi}[\varphi] \psi\right)} \\
& {[\varphi] B^{\alpha} \psi \leftrightarrow\left(\varphi \rightarrow B^{\varphi \wedge}\lceil\varphi]\right.} \\
& [\varphi] \psi)
\end{aligned}
$$

