Reasoning about Knowledge and Beliefs
 Lecture 7

Eric Pacuit

University of Maryland, College Park
pacuit.org
epacuit@umd.edu
October 2, 2013

Beliefs via Plausibility

$$
\mathcal{D}=\left\{w_{1}, w_{2}, w_{3}\right\}
$$

Beliefs via Plausibility

- $W=\left\{w_{1}, w_{2}, w_{3}\right\}$
- $w_{1} \preceq w_{2}$ and $w_{2} \preceq w_{1}$ (w_{1} and w_{2} are equi-plausbile)
- $w_{1} \prec w_{3}\left(w_{1} \preceq w_{3}\right.$ and $\left.w_{3} \npreceq w_{1}\right)$
- $w_{2} \prec w_{3}\left(w_{2} \preceq w_{3}\right.$ and $\left.w_{3} \npreceq w_{2}\right)$

Beliefs via Plausibility

- $W=\left\{w_{1}, w_{2}, w_{3}\right\}$
- $w_{1} \preceq w_{2}$ and $w_{2} \preceq w_{1}$ (w_{1} and w_{2} are equi-plausbile)
- $w_{1} \prec w_{3}\left(w_{1} \preceq w_{3}\right.$ and $\left.w_{3} \npreceq w_{1}\right)$
- $w_{2} \prec w_{3}\left(w_{2} \preceq w_{3}\right.$ and $\left.w_{3} \npreceq w_{2}\right)$
- $\left\{w_{1}, w_{2}\right\} \subseteq \operatorname{Min}_{\preceq}\left(\left[w_{i}\right]\right)$

Beliefs via Plausibility

Conditional Belief: $B^{\varphi} \psi$

Beliefs via Plausibility

Conditional Belief: $B^{\varphi} \psi$

$$
\operatorname{Min}_{\preceq}\left(\llbracket \varphi \rrbracket_{\mathcal{M}}\right) \subseteq \llbracket \psi \rrbracket_{\mathcal{M}}
$$

Example

$$
W_{2} \preceq_{b} W_{1}
$$

Example

Example

- $w_{1} \models B_{a}\left(H_{1} \wedge H_{2}\right) \wedge B_{b}\left(H_{1} \wedge H_{2}\right)$

Example

- $w_{1} \models B_{a}\left(H_{1} \wedge H_{2}\right) \wedge B_{b}\left(H_{1} \wedge H_{2}\right)$
- $w_{1} \models B_{a}^{T_{1}} H_{2}$

Example

- $w_{1} \models B_{a}\left(H_{1} \wedge H_{2}\right) \wedge B_{b}\left(H_{1} \wedge H_{2}\right)$
- $w_{1} \models B_{a}^{T_{1}} H_{2}$
- $w_{1} \models B_{b}^{T_{1}} T_{2}$

Grades of Doxastic Strength

Grades of Doxastic Strength

Suppose that w is the current state.

Grades of Doxastic Strength

Suppose that w is the current state.

- Belief (BP)

Grades of Doxastic Strength

Suppose that w is the current state.

- Belief (BP)
- Robust Belief ($[\preceq] P$)

Grades of Doxastic Strength

Suppose that w is the current state.

- Belief (BP)
- Robust Belief $([\preceq] P)$
- Strong Belief ($B^{s} P$)

Grades of Doxastic Strength

Suppose that w is the current state.

- Belief (BP)
- Robust Belief $([\preceq] P)$
- Strong Belief ($B^{s} P$)
- Knowledge ($K P$)

Is $B \varphi \rightarrow B^{\psi} \varphi$ valid?

Is $B \varphi \rightarrow B^{\psi} \varphi$ valid?

Is $B^{\alpha} \varphi \rightarrow B^{\alpha \wedge \beta} \varphi$ valid?

Is $B \varphi \rightarrow B^{\psi} \varphi$ valid?

Is $B^{\alpha} \varphi \rightarrow B^{\alpha \wedge \beta} \varphi$ valid?

Is $B \varphi \rightarrow B^{\psi} \varphi \vee B^{\neg \psi} \varphi$ valid?

Is $B \varphi \rightarrow B^{\psi} \varphi$ valid?

Is $B^{\alpha} \varphi \rightarrow B^{\alpha \wedge \beta} \varphi$ valid?

Is $B \varphi \rightarrow B^{\psi} \varphi \vee B^{\neg \psi} \varphi$ valid?

Exercise: Prove that B, B^{φ} and B^{s} are definable in the language with K and $[\preceq]$ modalities.

$\mathcal{M}, w \vDash B^{\varphi} \psi$ if for each $v \in \operatorname{Min}_{\preceq}([w] \cap \llbracket \varphi \rrbracket), \mathcal{M}, v \vDash \varphi$ where $\llbracket \varphi \rrbracket=\{w \mid \mathcal{M}, w \models \varphi\}$ and $[w]=\{v \mid w \sim v\}$

$\mathcal{M}, w \models B^{\varphi} \psi$ if for each $v \in \operatorname{Min}_{\preceq}([w] \cap \llbracket \varphi \rrbracket), \mathcal{M}, v \vDash \varphi$ where $\llbracket \varphi \rrbracket=\{w \mid \mathcal{M}, w \models \varphi\}$ and $[w]=\{v \mid w \sim v\}$

Core Logical Principles:

1. $B^{\varphi} \varphi$
2. $B^{\varphi} \psi \rightarrow B^{\varphi}(\psi \vee \chi)$
3. $\left(B^{\varphi} \psi_{1} \wedge B^{\varphi} \psi_{2}\right) \rightarrow B^{\varphi}\left(\psi_{1} \wedge \psi_{2}\right)$
4. $\left(B^{\varphi_{1}} \psi \wedge B^{\varphi_{2}} \psi\right) \rightarrow B^{\varphi_{1} \vee \varphi_{2}} \psi$
5. $\left(B^{\varphi} \psi \wedge B^{\psi} \varphi\right) \rightarrow\left(B^{\varphi} \chi \leftrightarrow B^{\psi} \chi\right)$
J. Burgess. Quick completeness proofs for some logics of conditionals. Notre Dame Journal of Formal Logic 22, 76-84, 1981.

Types of Beliefs: Logical Characterizations

- $\mathcal{M}, w \models K_{i} \varphi$ iff $\mathcal{M}, w \models B_{i}^{\psi} \varphi$ for all ψ
i knows φ iff i continues to believe φ given any new information

Types of Beliefs: Logical Characterizations

- $\mathcal{M}, w \models K_{i} \varphi$ iff $\mathcal{M}, w \models B_{i}^{\psi} \varphi$ for all ψ
i knows φ iff i continues to believe φ given any new information
- $\mathcal{M}, w \models\left[\preceq_{i}\right] \varphi$ iff $\mathcal{M}, w \models B_{i}^{\psi} \varphi$ for all ψ with $\mathcal{M}, w \models \psi$. i robustly believes φ iff i continues to believe φ given any true formula.

Types of Beliefs: Logical Characterizations

- $\mathcal{M}, w \models K_{i} \varphi$ iff $\mathcal{M}, w \models B_{i}^{\psi} \varphi$ for all ψ
i knows φ iff i continues to believe φ given any new information
- $\mathcal{M}, w \models\left[\preceq_{i}\right] \varphi$ iff $\mathcal{M}, w \models B_{i}^{\psi} \varphi$ for all ψ with $\mathcal{M}, w \models \psi$. i robustly believes φ iff i continues to believe φ given any true formula.
- $\mathcal{M}, w \models B_{i}^{s} \varphi$ iff $\mathcal{M}, w \models B_{i} \varphi$ and $\mathcal{M}, w \models B_{i}^{\psi} \varphi$ for all ψ with $\mathcal{M}, w \models \neg K_{i}(\psi \rightarrow \neg \varphi)$.
i strongly believes φ iff i believes φ and continues to believe φ given any evidence (truthful or not) that is not known to contradict φ.

Additional Axioms

Success:

$$
B_{i}^{\varphi} \varphi
$$

Additional Axioms

Success:

$$
B_{i}^{\varphi} \varphi
$$

Knowledge entails belief $\quad K_{i} \varphi \rightarrow B_{i}^{\psi} \varphi$

Additional Axioms

Success:
$B_{i}^{\varphi} \varphi$
Knowledge entails belief
Full introspection:
$K_{i} \varphi \rightarrow B_{i}^{\psi} \varphi$
$B_{i}^{\varphi} \psi \rightarrow K_{i} B_{i}^{\varphi} \psi \quad$ and $\quad \neg B_{i}^{\varphi} \psi \rightarrow K_{i} \neg B_{i}^{\varphi} \psi$

Additional Axioms

Success:
$B_{i}^{\varphi} \varphi$
Knowledge entails belief
Full introspection:
$K_{i} \varphi \rightarrow B_{i}^{\psi} \varphi$
Cautious Monotonicity:
$B_{i}^{\varphi} \psi \rightarrow K_{i} B_{i}^{\varphi} \psi \quad$ and $\quad \neg B_{i}^{\varphi} \psi \rightarrow K_{i} \neg B_{i}^{\varphi} \psi$
$\left(B_{i}^{\varphi} \alpha \wedge B_{i}^{\varphi} \beta\right) \rightarrow B_{i}^{\varphi \wedge \beta} \alpha$

Additional Axioms

Success:
$B_{i}^{\varphi} \varphi$
Knowledge entails belief
Full introspection:
$K_{i} \varphi \rightarrow B_{i}^{\psi} \varphi$
$B_{i}^{\varphi} \psi \rightarrow K_{i} B_{i}^{\varphi} \psi \quad$ and $\quad \neg B_{i}^{\varphi} \psi \rightarrow K_{i} \neg B_{i}^{\varphi} \psi$
Cautious Monotonicity:
$\left(B_{i}^{\varphi} \alpha \wedge B_{i}^{\varphi} \beta\right) \rightarrow B_{i}^{\varphi \wedge \beta} \alpha$
Rational Monotonicity:

Additional Axioms

Success:
$B_{i}^{\varphi} \varphi$
Knowledge entails belief
Full introspection:
$K_{i} \varphi \rightarrow B_{i}^{\psi} \varphi$
$B_{i}^{\varphi} \psi \rightarrow K_{i} B_{i}^{\varphi} \psi \quad$ and $\quad \neg B_{i}^{\varphi} \psi \rightarrow K_{i} \neg B_{i}^{\varphi} \psi$
Cautious Monotonicity:
$\left(B_{i}^{\varphi} \alpha \wedge B_{i}^{\varphi} \beta\right) \rightarrow B_{i}^{\varphi \wedge \beta} \alpha$
Rational Monotonicity:

Rational Monotonicity, I

Rational Monotonicity: $\left(B_{i}^{\varphi} \alpha \wedge \neg B_{i}^{\varphi} \neg \beta\right) \rightarrow B_{i}^{\varphi \wedge \beta} \alpha$
R. Stalnaker. Nonmonotonic consequence relations. Fundamenta Informaticae, 21: 721, 1994.

Rational Monotonicity, I

Rational Monotonicity: $\left(B_{i}^{\varphi} \alpha \wedge \neg B_{i}^{\varphi} \neg \beta\right) \rightarrow B_{i}^{\varphi \wedge \beta} \alpha$
R. Stalnaker. Nonmonotonic consequence relations. Fundamenta Informaticae, 21: 721, 1994.

Consider the three composers: Verdi, Bizet, and Satie, and suppose that we initially accept (correctly but defeasibly) that Verdi is Italian $I(v)$, while Bizet and Satie are French $(F(b) \wedge F(s))$.

Rational Monotonicity, II

Suppose now that we are told by a reliable (but not infallible!) source of information that that Verdi and Bizet are compatriots $(C(v, b))$. This leads us no longer to endorse either the proposition that Verdi is Italian (because he could be French), or that Bizet is French (because he could be Italian); but we would still draw the defeasible consequence that Satie is French, since nothing that we have learned conflicts with it.

$$
B^{C(v, b)} F(s)
$$

Rational Monotonicity, III

Now consider the proposition $C(v, s)$ that Verdi and Satie are compatriots. Before learning that $C(v, b)$ we would be inclined to reject the proposition $C(v, s)$ because we accept $I(v)$ and $F(s)$, but after learning that Verdi and Bizet are compatriots, we can no longer endorse $I(v)$, and therefore no longer reject $C(v, s)$.

$$
\neg B^{C(v, b)} \neg C(v, s)
$$

Rational Monotonicity, IV

However, if we added $C(v, s)$ to our stock of beliefs, we would lose the inference to $F(s)$: in the context of $C(v, b)$, the proposition $C(v, s)$ is equivalent to the statement that all three composers have the same nationality. This leads us to suspend our belief in the proposition $F(s)$.

$$
\neg B^{C(v, b) \wedge C(v, s)} F(s)
$$

Rational Monotonicity, IV

However, if we added $C(v, s)$ to our stock of beliefs, we would lose the inference to $F(s)$: in the context of $C(v, b)$, the proposition $C(v, s)$ is equivalent to the statement that all three composers have the same nationality. This leads us to suspend our belief in the proposition $F(s)$.

$$
\neg B^{C(v, b) \wedge C(v, s)} F(s)
$$

$B^{C(v, b)} F(s)$ and $\neg B^{C(v, b)} \neg C(v, s)$ but $\neg B^{C(v, b) \wedge C(v, s)} F(s)$

