Reasoning about Knowledge and Beliefs
 Lecture 6

Eric Pacuit

University of Maryland, College Park
pacuit.org
epacuit@umd.edu

October 2, 2013

Summary

(Multi-agent) S5 is a logic of "knowledge" (Multi-agent) KD45 is a logic of "belief"

Summary

(Multi-agent) S5 is a logic of "knowledge"
(Multi-agent) KD45 is a logic of "belief"

Two issues:

- Modeling awareness/unawareness
- Logics with both knowledge and belief operators

Unawareness

Why would an agent not know some fact φ ? (i.e., why would $\neg K_{i} \varphi$ be true?)

Unawareness

Why would an agent not know some fact φ ? (i.e., why would $\neg K_{i} \varphi$ be true?)

- The agent may or may not believe φ, but has not ruled out all the $\neg \varphi$-worlds

Unawareness

Why would an agent not know some fact φ ? (i.e., why would $\neg K_{i} \varphi$ be true?)

- The agent may or may not believe φ, but has not ruled out all the $\neg \varphi$-worlds
- The agent may believe φ and ruled-out the $\neg \varphi$-worlds, but this was based on "bad" evidence, or was not justified, or the agent was "epistemically lucky" (e.g., Gettier cases),...

Unawareness

Why would an agent not know some fact φ ? (i.e., why would $\neg K_{i} \varphi$ be true?)

- The agent may or may not believe φ, but has not ruled out all the $\neg \varphi$-worlds
- The agent may believe φ and ruled-out the $\neg \varphi$-worlds, but this was based on "bad" evidence, or was not justified, or the agent was "epistemically lucky" (e.g., Gettier cases),...
- The agent has not yet entertained possibilities relevant to the truth of φ (the agent is unaware of φ).

Can we model unawareness in state-space models?

Can we model unawareness in state-space models?
E. Dekel, B. Lipman and A. Rustichini. Standard State-Space Models Preclude Unawareness. Econometrica, 55:1, pp. 159-173 (1998).

Properties of Unawareness

$$
\text { 1. } U \varphi \rightarrow(\neg K \varphi \wedge \neg K \neg K \varphi)
$$

Properties of Unawareness

$$
\begin{aligned}
& \text { 1. } U \varphi \rightarrow(\neg K \varphi \wedge \neg K \neg K \varphi) \\
& \text { 2. } \neg K \cup \varphi
\end{aligned}
$$

Properties of Unawareness

$$
\begin{aligned}
& \text { 1. } U \varphi \rightarrow(\neg K \varphi \wedge \neg K \neg K \varphi) \\
& \text { 2. } \neg K \cup \varphi \\
& \text { 3. } U \varphi \rightarrow U \cup \varphi
\end{aligned}
$$

Properties of Unawareness

1. $U \varphi \rightarrow(\neg K \varphi \wedge \neg K \neg K \varphi)$
2. $\neg K U \varphi$
3. $U \varphi \rightarrow U U \varphi$

Theorem. In any logic where U satisfies the above axiom schemes, we have

1. If K satisfies Necessitation (from φ infer $K \varphi$), then for all formulas $\varphi, \neg U \varphi$ is derivable (the agent is aware of everything); and
2. If K satisfies Monotonicity (from $\varphi \rightarrow \psi$ infer $K \varphi \rightarrow K \psi$), then for all φ and $\psi, U \varphi \rightarrow \neg K \psi$ is derivable (if the agent is unaware of something then the agent does not know anything).
B. Schipper. Online Bibliography on Models of Unawareness. http://www. econ.ucdavis.edu/faculty/schipper/unaw.htm.
J. Halpern. Alternative semantics for unawareness. Games and Economic Behavior, 37, 321-339, 2001.

Ann does not know that P

Ann does not know that P, but she believes that $\neg P$

Ann does not know that P, but she believes that $\neg P$ is true to degree r.

Combining Logics of Knowledge and Belief

$\mathcal{M}=\left\langle W,\left\{\sim_{i}\right\}_{i \in \mathcal{A}},\left\{R_{i}\right\}_{i \in \mathcal{A}}, V\right\rangle$ where

- $W \neq \emptyset$ is a set of states;
- each \sim_{i} is an equivalence relation on W;
- each R_{i} is a serial, transitive, Euclidean relation on W; and
- V is a valuation function.

Combining Logics of Knowledge and Belief

$\mathcal{M}=\left\langle W,\left\{\sim_{i}\right\}_{i \in \mathcal{A}},\left\{R_{i}\right\}_{i \in \mathcal{A}}, V\right\rangle$ where

- $W \neq \emptyset$ is a set of states;
- each \sim_{i} is an equivalence relation on W;
- each R_{i} is a serial, transitive, Euclidean relation on W; and
- V is a valuation function.

What is the relationship between knowledge $\left(K_{i}\right)$ and believe $\left(B_{i}\right)$?

- Each K_{i} is $\mathbf{S 5}$

Combining Logics of Knowledge and Belief

$\mathcal{M}=\left\langle W,\left\{\sim_{i}\right\}_{i \in \mathcal{A}},\left\{R_{i}\right\}_{i \in \mathcal{A}}, V\right\rangle$ where

- $W \neq \emptyset$ is a set of states;
- each \sim_{i} is an equivalence relation on W;
- each R_{i} is a serial, transitive, Euclidean relation on W; and
- V is a valuation function.

What is the relationship between knowledge $\left(K_{i}\right)$ and believe $\left(B_{i}\right)$?

- Each K_{i} is $\mathbf{S 5}$
- Each B_{i} is KD45

Combining Logics of Knowledge and Belief

$\mathcal{M}=\left\langle W,\left\{\sim_{i}\right\}_{i \in \mathcal{A}},\left\{R_{i}\right\}_{i \in \mathcal{A}}, V\right\rangle$ where

- $W \neq \emptyset$ is a set of states;
- each \sim_{i} is an equivalence relation on W;
- each R_{i} is a serial, transitive, Euclidean relation on W; and
- V is a valuation function.

What is the relationship between knowledge $\left(K_{i}\right)$ and believe $\left(B_{i}\right)$?

- Each K_{i} is $\mathbf{S 5}$
- Each B_{i} is KD45
- $K_{i} \varphi \rightarrow B_{i} \varphi$? "knowledge implies belief"

Combining Logics of Knowledge and Belief

$\mathcal{M}=\left\langle W,\left\{\sim_{i}\right\}_{i \in \mathcal{A}},\left\{R_{i}\right\}_{i \in \mathcal{A}}, V\right\rangle$ where

- $W \neq \emptyset$ is a set of states;
- each \sim_{i} is an equivalence relation on W;
- each R_{i} is a serial, transitive, Euclidean relation on W; and
- V is a valuation function.

What is the relationship between knowledge $\left(K_{i}\right)$ and believe $\left(B_{i}\right)$?

- Each K_{i} is $\mathbf{S 5}$
- Each B_{i} is KD45
- $K_{i} \varphi \rightarrow B_{i} \varphi$? "knowledge implies belief"
- $B_{i} \varphi \rightarrow B_{i} K_{i} \varphi$? "positive certainty"

Combining Logics of Knowledge and Belief

$\mathcal{M}=\left\langle W,\left\{\sim_{i}\right\}_{i \in \mathcal{A}},\left\{R_{i}\right\}_{i \in \mathcal{A}}, V\right\rangle$ where

- $W \neq \emptyset$ is a set of states;
- each \sim_{i} is an equivalence relation on W;
- each R_{i} is a serial, transitive, Euclidean relation on W; and
- V is a valuation function.

What is the relationship between knowledge $\left(K_{i}\right)$ and believe $\left(B_{i}\right)$?

- Each K_{i} is $\mathbf{S 5}$
- Each B_{i} is KD45
- $K_{i} \varphi \rightarrow B_{i} \varphi$? "knowledge implies belief"
- $B_{i} \varphi \rightarrow B_{i} K_{i} \varphi$? "positive certainty"
- $B_{i} \varphi \rightarrow K_{i} B_{i} \varphi$? "strong introspection"

An Issue

- Suppose that p is something you are certain of (you believe it with probability one), but is false: $\neg p \wedge B p$

An Issue

- Suppose that p is something you are certain of (you believe it with probability one), but is false: $\neg p \wedge B p$
- Assuming 1. B satisfies KD45, 2. K satisfies S5, 3. knowledge implies believe and 4. positive certainty leads to a contradiction.

An Issue

- Suppose that p is something you are certain of (you believe it with probability one), but is false: $\neg p \wedge B p$
- Assuming 1. B satisfies KD45, 2. K satisfies S5, 3. knowledge implies believe and 4. positive certainty leads to a contradiction.
- $B p \rightarrow B K p$

An Issue

- Suppose that p is something you are certain of (you believe it with probability one), but is false: $\neg p \wedge B p$
- Assuming 1. B satisfies KD45, 2. K satisfies S5, 3. knowledge implies believe and 4. positive certainty leads to a contradiction.
- $B p \rightarrow B K p$
- $\neg p \rightarrow \neg K p$

An Issue

- Suppose that p is something you are certain of (you believe it with probability one), but is false: $\neg p \wedge B p$
- Assuming 1. B satisfies KD45, 2. K satisfies S5, 3. knowledge implies believe and 4. positive certainty leads to a contradiction.
- $B p \rightarrow B K p$
- $\neg p \rightarrow \neg K p \rightarrow K \neg K p$

An Issue

- Suppose that p is something you are certain of (you believe it with probability one), but is false: $\neg p \wedge B p$
- Assuming 1. B satisfies KD45, 2. K satisfies S5, 3. knowledge implies believe and 4. positive certainty leads to a contradiction.
- $B p \rightarrow B K p$
- $\neg p \rightarrow \neg K p \rightarrow K \neg K p \rightarrow B \neg K p$

An Issue

- Suppose that p is something you are certain of (you believe it with probability one), but is false: $\neg p \wedge B p$
- Assuming 1. B satisfies KD45, 2. K satisfies S5, 3. knowledge implies believe and 4. positive certainty leads to a contradiction.
- $B p \rightarrow B K p$
- $\neg p \rightarrow \neg K p \rightarrow K \neg K p \rightarrow B \neg K p$
- So, $B K p \wedge B \neg K p$ also holds, but this contradictions $B \varphi \rightarrow \neg B \neg \varphi$.
J. Halpern. Should Knowledge Entail Belief?. Journal of Philosophical Logic, 25:5, 1996, pp. 483-494.

- The set of states, with a distinguished state denoted the "actual world"

- The set of states, with a distinguished state denoted the "actual world"
- The agent's (hard) information (i.e., the states consistent with what the agent knows)

- The agent's (hard) information (i.e., the states consistent with what the agent knows)
- The agent's beliefs (soft information--the states consistent with what the agent believes)

Digression on Belief Change, I

Digression on Belief Change, I

Consider the following beliefs of a rational agent:
p_{1} All Europeans swans are white.
p_{2} The bird caught in the trap is a swan.
p_{3} The bird caught in the trap comes from Sweden.
p_{4} Sweden is part of Europe.

Thus, the agent believes:
q The bird caught in the trap is white.

Digression on Belief Change, I

Consider the following beliefs of a rational agent:
p_{1} All Europeans swans are white.
p_{2} The bird caught in the trap is a swan.
p_{3} The bird caught in the trap comes from Sweden.
p_{4} Sweden is part of Europe.

Thus, the agent believes:
q The bird caught in the trap is white.
Now suppose the rational agent-for example, You-learn that the bird caught in the trap is black $(\neg q)$.

Digression on Belief Change, I

Consider the following beliefs of a rational agent:
p_{1} All Europeans swans are white.
p_{2} The bird caught in the trap is a swan.
p_{3} The bird caught in the trap comes from Sweden.
p_{4} Sweden is part of Europe.

Thus, the agent believes:
q The bird caught in the trap is white.
Question: How should the agent incorporate $\neg q$ into his belief state to obtain a consistent belief state?

Digression on Belief Change, I

Consider the following beliefs of a rational agent:
p_{1} All Europeans swans are white.
p_{2} The bird caught in the trap is a swan.
p_{3} The bird caught in the trap comes from Sweden.
p_{4} Sweden is part of Europe.

Thus, the agent believes:
q The bird caught in the trap is white.
Question: How should the agent incorporate $\neg q$ into his belief state to obtain a consistent belief state?
Problem: Logical considerations alone are insufficient to answer this question! Why??

Digression on Belief Change, I

Consider the following beliefs of a rational agent:
p_{1} All Europeans swans are white.
p_{2} The bird caught in the trap is a swan.
p_{3} The bird caught in the trap comes from Sweden.
p_{4} Sweden is part of Europe.

Thus, the agent believes:
q The bird caught in the trap is white.
Question: How should the agent incorporate $\neg q$ into his belief state to obtain a consistent belief state?
Problem: Logical considerations alone are insufficient to answer this question! Why??
There are several logically consistent ways to incorporate $\neg q$!

Digression on Belief Change, II

What extralogical factors serve to determine what beliefs to give up and what beliefs to retain?

Digression on Belief Change, III

Belief revision is a matter of choice, and the choices are to be made in such a way that:

1. The resulting theory squares with the experience;
2. It is simple; and
3. The choices disturb the original theory as little as possible.

Digression on Belief Change, III

Belief revision is a matter of choice, and the choices are to be made in such a way that:

1. The resulting theory squares with the experience;
2. It is simple; and
3. The choices disturb the original theory as little as possible.

Research has relied on the following related guiding ideas:

1. When accepting a new piece of information, an agent should aim at a minimal change of his old beliefs.
2. If there are different ways to effect a belief change, the agent should give up those beliefs which are least entrenched.

Digression: Belief Revision

A.P. Pedersen and H. Arló-Costa. "Belief Revision.". In Continuum Companion to Philosophical Logic. Continuum Press, 2011.

Hans Rott. Change, Choice and Inference: A Study of Belief Revision and Nonmonotonic Reasoning. Oxford University Press, 2001.

- The agent's (hard) information (i.e., the states consistent with what the agent knows)
- The agent's beliefs (soft information--the states consistent with what the agent believes)

- The agent's beliefs (soft information--the states consistent with what the agent believes)
- The agent's "contingency plan": when the stronger beliefs fail, go with the weaker ones.

- The agent's beliefs (soft information--the states consistent with what the agent believes)
- The agent's "contingency plan": when the stronger beliefs fail, go with the weaker ones.

Sphere Models

Sphere Models

Let W be a set of states, A system of spheres $\mathcal{F} \subseteq \wp(W)$ such that:

- For each $S, S^{\prime} \in \mathcal{F}$, either $S \subseteq S^{\prime}$ or $S^{\prime} \subseteq S$
- For any $P \subseteq W$ there is a smallest $S \in \mathcal{F}$ (according to the subset relation) such that $P \cap S \neq \emptyset$
- The spheres are non-empty $\bigcap \mathcal{F} \neq \emptyset$ and cover the entire information cell $\bigcup \mathcal{F}=W$ (or $[w]=\{v \mid w \sim v\}$)

Let \mathcal{F} be a system of spheres on W : for $w, v \in W$, let

$$
w \preceq_{\mathcal{F}} v \text { iff for all } S \in \mathcal{F} \text {, if } v \in S \text { then } w \in S
$$

Then, $\preceq_{\mathcal{F}}$ is reflexive, transitive, and well-founded.
$w \preceq_{\mathcal{F}} v$ means that: no matter what the agent learns in the future, as long as world v is still consistent with his beliefs and w is still epistemically possible, then w is also consistent with his beliefs.

Plausibility Models

Epistemic Models: $\mathcal{M}=\left\langle W,\left\{\sim_{i}\right\}_{i \in \mathcal{A}}, V\right\rangle$
Truth: $\mathcal{M}, w \models \varphi$ is defined as follows:

- $\mathcal{M}, w \models p$ iff $w \in V(p)$ (with $p \in A t$)
- $\mathcal{M}, w \models \neg \varphi$ if $\mathcal{M}, w \not \vDash \varphi$
- $\mathcal{M}, w \models \varphi \wedge \psi$ if $\mathcal{M}, w \models \varphi$ and $\mathcal{M}, w \models \psi$
- $\mathcal{M}, w \models K_{i} \varphi$ if for each $v \in W$, if $w \sim_{i} v$, then $\mathcal{M}, v \models \varphi$

Plausibility Models

Epistemic-Plausibility Models: $\mathcal{M}=\left\langle W,\left\{\sim_{i}\right\}_{i \in \mathcal{A}},\left\{\preceq_{i}\right\}_{i \in \mathcal{A}}, V\right\rangle$
Truth: $\mathcal{M}, w \models \varphi$ is defined as follows:

- $\mathcal{M}, w \models p$ iff $w \in V(p)$ (with $p \in A t$)
- $\mathcal{M}, w \models \neg \varphi$ if $\mathcal{M}, w \not \vDash \varphi$
- $\mathcal{M}, w \models \varphi \wedge \psi$ if $\mathcal{M}, w \models \varphi$ and $\mathcal{M}, w \models \psi$
- $\mathcal{M}, w \models K_{i} \varphi$ if for each $v \in W$, if $w \sim_{i} v$, then $\mathcal{M}, v \models \varphi$

Plausibility Models

Epistemic-Plausibility Models: $\mathcal{M}=\left\langle W,\left\{\sim_{i}\right\}_{i \in \mathcal{A}},\left\{\preceq_{i}\right\}_{i \in \mathcal{A}}, V\right\rangle$
Plausibility Relation: $\preceq_{i} \subseteq W \times W . w \preceq_{i} v$ means
" w is at least as plausible as v."

Plausibility Models

Epistemic-Plausibility Models: $\mathcal{M}=\left\langle W,\left\{\sim_{i}\right\}_{i \in \mathcal{A}},\left\{\preceq_{i}\right\}_{i \in \mathcal{A}}, V\right\rangle$
Plausibility Relation: $\preceq_{i} \subseteq W \times W . w \preceq_{i} v$ means
" w is at least as plausible as v."

Properties of \preceq_{i} : reflexive, transitive, and well-founded.

Plausibility Models

Epistemic-Plausibility Models: $\mathcal{M}=\left\langle W,\left\{\sim_{i}\right\}_{i \in \mathcal{A}},\left\{\preceq_{i}\right\}_{i \in \mathcal{A}}, V\right\rangle$
Plausibility Relation: $\preceq_{i} \subseteq W \times W . w \preceq_{i} v$ means
" w is at least as plausible as v."

Properties of \preceq_{i} : reflexive, transitive, and well-founded.

Most Plausible: For $X \subseteq W$, let

$$
\operatorname{Min}_{\preceq_{i}}(X)=\left\{v \in W \mid v \preceq_{i} w \text { for all } w \in X\right\}
$$

Plausibility Models

Epistemic-Plausibility Models: $\mathcal{M}=\left\langle W,\left\{\sim_{i}\right\}_{i \in \mathcal{A}},\left\{\preceq_{i}\right\}_{i \in \mathcal{A}}, V\right\rangle$
Plausibility Relation: $\preceq_{i} \subseteq W \times W . W \preceq_{i} v$ means
" w is at least as plausible as v."

Properties of \preceq_{i} : reflexive, transitive, and well-founded.
Most Plausible: For $X \subseteq W$, let

$$
\operatorname{Min}_{\unlhd_{i}}(X)=\left\{v \in W \mid v \preceq_{i} w \text { for all } w \in X\right\}
$$

Assumptions:

1. plausibility implies possibility: if $w \preceq_{i} v$ then $w \sim_{i} v$.
2. locally-connected: if $w \sim_{i} v$ then either $w \preceq_{i} v$ or $v \preceq_{i} w$.

Plausibility Models

Epistemic-Plausibility Models: $\mathcal{M}=\left\langle W,\left\{\sim_{i}\right\}_{i \in \mathcal{A}},\left\{\preceq_{i}\right\}_{i \in \mathcal{A}}, V\right\rangle$
Truth: $\mathcal{M}, w \vDash \varphi$ is defined as follows:

- $\mathcal{M}, w \models p$ iff $w \in V(p)$ (with $p \in A t$)
- $\mathcal{M}, w \models \neg \varphi$ if $\mathcal{M}, w \not \vDash \varphi$
- $\mathcal{M}, w \models \varphi \wedge \psi$ if $\mathcal{M}, w \models \varphi$ and $\mathcal{M}, w \models \psi$
- $\mathcal{M}, w \models K_{i} \varphi$ if for each $v \in W$, if $w \sim_{i} v$, then $\mathcal{M}, v \models \varphi$
- $\mathcal{M}, w \models B_{i} \varphi$ if for each $v \in \operatorname{Min}_{\varliminf_{i}}\left([w]_{i}\right), \mathcal{M}, v \models \varphi$ $[w]_{i}=\left\{v \mid w \sim_{i} v\right\}$ is the agent's information cell.

