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These short notes are intended to introduce some of the basic concepts of Modal Logic. The
primary goal is to provide students in Philosophy 370 at the University of Maryland, College Park
with a study guide that will complement the lectures on modal logic. There are many textbooks
that you can consult for more information. The following is a list of some texts (this is not a
complete list, but a pointer to books that I have found particularly useful).

• Modal Logic for Open Minds by Johan van Benthem. A new textbook on modal logic providing
a modern introduction to modal logic.

• Modal Logic for Philosophers by James Garson. An introduction to modal logic geared to-
wards Philosophy students.

• Modal Logic by Brian Chellas. A nice introduction to modal logic though somewhat outdated.

• The Modal Logic entry at the Stanford Encyclopedia of Philosophy (http://plato.stanford.
edu/entries/logic-modal/). This entry was written by James Garson and provides a nice
overview of the philosophical applications of modal logic.

There are also more advanced books that you should keep on your radar.

• Handbook of Modal Logic edited by Johan van Benthem, Patrick Blackburn and Frank Wolter.
This very extensive volume represents the current state-of-affairs in modal logic.

• Modal Logic by Patrick Blackburn, Maarten de Rijke and Yde Venema. An advanced, but
very accessible, textbook focusing on the main technical results in the area.

• First Order Modal Logic by Melvin Fitting and Elliot Mehdelsohn. The focus here is on
first-order modal logic (as opposed to propositional modal logic which is the focus of most
of the other texts mentioned here). This text provides both a philosophical and technical
introduction to this fascinating area.

1 Syntax and Semantics of Modal Logic

What is a modal? A modal is anything that qualifies the truth of a sentence. There are many
ways to qualify the truth of a statement in natural language. For example, each of the phrases
below can be used to complete the sentence: John happy.
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• is necessarily

• is possibly

• is known/believed (by Ann) to be

• is probably

• is permitted to be

• is obliged to be

• is now

• will be

• can do something to ensure that he is

The basic modal language is a generic formal language that has been used to reason about situations
involving modal notions. This language is defined as follows:

Definition 1.1 (The Basic Modal Language) Let S = {p, q, r, . . .} be a set of sentence letters,
or atomic propositions. We also include two special propositions ‘>’ and ‘⊥’ meaning ‘true’ and
‘false’ respectively. The set of well-formed formulas of modal logic is the smallest set generated by
the following grammar:

p | ¬ϕ | ϕ ∧ ψ | 2ϕ | 3ϕ

where p ∈ S. Let L denote the basic modal language. /

Examples of modal formulas include: 2⊥, 23>, p→ 2(q ∧ r), and 2(p→ (q ∨3r)↔ 32p).

One language, many readings. There are many possible readings for the modal operators ‘2’
and ‘3’. Here are some samples:

• Alethic Reading: 2ϕ means ‘ϕ is necessary’ and 3ϕ means ‘ϕ is possible’.

• Deontic Reading: 2ϕ means ‘ϕ is obligatory’ and 3ϕ means ‘ϕ is permitted’. In this
literature, typically ‘O’ is used instead of ‘2’ and ‘P ’ instead of ‘3’.

• Epistemic Reading: 2ϕ means ‘ϕ is known’ and 3ϕ means ‘ϕ is consistent with the current
information’. In this literature, typically ‘K’ is used instead of ‘2’ and ‘L’ instead of ‘3’.

• Doxastic Reading: 2ϕ means ‘ϕ is believed’ and 3ϕ means ‘ϕ is (doxastically) possible’.
In this literature, typically ‘B’ is used instead of ‘2’.

• Temporal Reading: 2ϕ means ‘ϕ will always be true’ and 3ϕ means ‘ϕ will be true at
some point in the future’.

• Provability Reading: 2ϕ means ‘there is a proof of ϕ (for example, in Peano Arithmetic)’
and 3ϕ means ‘ϕ is consistent (given a proof system such as Peano Arithmetic)’.

There are many interesting arguments involving modal notions. Below I give two examples,
both of which have been widely discussed by philosophers.
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Example 1.2 (Aristotle’s Sea Battle Argument) A general is contemplating whether or not
to give an order to attack. The general reasons as follows:

1. If I give the order to attack, then, necessarily, there will be a sea battle tomorrow

2. If not, then, necessarily, there will not be one.

3. Now, I give the order or I do not.

4. Hence, either it is necessary that there is a sea battle tomorrow or it is necessary that none
occurs.

The conclusion is that either it is inevitable that there is a sea battle tomorrow or it is inevitable
that there is no battle. So, why should the general bother giving the order? There are two possible
formalizations of this argument corresponding to different readings of “if A then necessarily B”:

A→ 2B
¬A→ 2¬B
A ∨ ¬A
2B ∨2¬B

2(A→ B)
2(¬A→ ¬B)
A ∨ ¬A
2B ∨2¬B

Are these two formalizations the same? If not, which argument is valid? /

The second example, provided by J. Forrester in 1984, involves the Deontic reading of modal logic.

Example 1.3 (The Gentle Murder Paradox) Suppose that Jones murders Smith. Accepting
the principle that ‘If Jones murders Smith, then Jones ought to murder Smith gently’, we can argue
that, in fact, Jones ought to murder Smith as follows:

1. Jones murders Smith. (M)

2. If Jones murders Smith, then Jones ought to murder Smith gently. (M → OG)

3. Jones ought to murder Smith gently. (OG)

4. If Jones murders Smith gently, then Jones murders Smith. (G→M)

5. If Jones ought to murder Smith gently, then Jones ought to murder Smith. (OG→ OM)

6. Jones ought to murder Smith. (OM)

Is this argument valid? Note that reasoning from statement 4. to statement 5. follows a general
modal reasoning pattern: if ‘X → Y ’ has been established, then we can establish ‘2X → 2Y ’. /

In order to answer the questions in the examples above, we need a natural semantics for the
basic modal language.

Question 1.4 Can we give a truth-table semantics for the basic modal language? (Hint: there are
only 4 possible truth-table for a unary operator. Suppose we want 2A → A to be valid (i.e., true
regardless of the truth value assigned to A), but allow A→ 2A and ¬2A to be false (i.e., for each
formula, there is a possible assignment of truth values to A which makes the formulas false).
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A semantics for the basic modal language was developed by Saul Kripke, Stag Kanger, Jaakko
Hinitkka and others in the 1960s and 1970s. Formulas are interpreted over graph-like structures:

Definition 1.5 (Relational Structure) A Relational Structure (also called a possible worlds
model, Kripke model or a modal model) is a triple M = 〈W,R, V 〉 where W is a nonempty set
(elements of W are called states), R is a relation on W (formally, R ⊆ W × W ) and V is a
valuation function assigning truth values V (p, w) to atomic propositions p at state w (formally
V : S ×W → {0, 1} where S is the set of sentence letters). /

Example 1.6 Often relational structures are drawn instead of formally defined. For example, the
following picture represents the relational structure M = 〈W,R, V 〉 where W = {w1, w2, w3, w4},
R = {(w1, w2), (w1, w3), (w1, w4), (w2, w2), (w2, w4), (w3, w4)} and V (p, w2) = V (p, w3) = V (q, w3) =
V (q, w4) = 1 (with all other propositional variables assigned 0 at the states).

pw2

pw1 q w4

p, qw3

/

Formulas of the basic modal language are interpreted at states in a relational structure.

Definition 1.7 (Truth of Modal Formulas) Truth of a modal formula ϕ at a state w in a
relational structure M = 〈W,R, V 〉, denoted M, w |= ϕ is defined inductively as follows:

1. M, w |= p iff V (p, w) = 1 (where p ∈ S)

2. M, w |= > and M, w 6|= ⊥

3. M, w |= ¬ϕ iff M, w 6|= ϕ

4. M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ

5. M, w |= 2ϕ iff for all v ∈W , if wRv then M, v |= ϕ

6. M, w |= 3ϕ iff there is a v ∈W such that wRv and M, v |= ϕ /

Two remarks about this definition. First, note that truth for the other boolean connectives
(→,∨,↔) is not given in the above definition. This is not necessary since these connectives are
definable from ‘¬’ and ‘∧’. 1 As an exercise, make sure you can specify the truth definition in the
style of the Definition above for each of the boolean connectives not mentioned. Second, note the
analogy between ‘2’ and a universal quantifier and ‘3’ and a existential quantifier.

1For example, ϕ→ ψ can be defined as (i.e., is logically equivalent to) ¬(ϕ ∧ ¬ψ).
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Question 1.8 LetM = 〈W,R, V 〉 be a relational model. Give the recursive definition of a function
V : L → ℘(W ) so that V (ϕ) = {w ∈ W | M, w |= ϕ} (recall that ℘(W ) = {X | X ⊆ W} is the
powerset of W ).

Example 1.9 To illustrate the above definition of truth of modal formula, recall the relational
structure from Example 1.6:

pw2

pw1 q w4

p, qw3

• M, w3, |= 2q: w4 is the only worlds accessible from w3 and q is true at w4.

• M, w1 |= 3q: there is a state accessible from w1 (namely w3) where q is true.

• M, w1 |= 32q: w3 is accessible from w1 and q is true in all of the worlds accessible from w3.

• M, w4 |= 2⊥: there are no worlds accessible from w4, so any formula beginning with ‘2’
will be true (this is analogous to the fact the universal sentences are true in any first-order
structure where the domain is empty). Similarly, any formula beginning with a ‘3’ will be
false (again, this is analogous to the fact that existential statements are false in first-order
structures with empty domains). /

For an extended discussion surrounding the interpreting modal formulas in relational structures,
see Chapter 2 of Modal Logic for Open Minds by Johan van Benthem.

Question 1.10 Consider the following relational structure.

Bw1

A w2 A w3

A

w4

B w5

B w6

1. 2A→ 22A

2. 22A→ 2A

3. 3(3A ∧3B)

4. 32⊥

5. 2(2A→ A)→ 2A

For each formula to the right, list the states where the formula is true.
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2 Modal Validity

Definition 2.1 (Modal Validity) A modal formula ϕ is valid in a relational structure M =
〈W,R, V 〉, denoted M |= ϕ, provided M, w |= ϕ for each w ∈ W . A modal formula ϕ is valid,
denoted |= ϕ, provided ϕ is valid in all relational structures. /

In order to show that a modal formula ϕ is valid, it is enough to argue informally that ϕ is true at
an arbitrary state in an arbitrary relational structure. On the other hand, to show a modal formula
ϕ is not valid, one must provide a counter example (i.e., a relational structure and state where ϕ
is false).

Fact 2.2 2ϕ↔ ¬3¬ϕ is valid.

Proof. SupposeM = 〈W,R, V 〉 is an arbitrary relational structure and w ∈W an arbitrary state.
We will show that M, w |= 2ϕ↔ ¬3¬ϕ. We first show that if M, w |= 2ϕ then M, w |= ¬3¬ϕ.
If M, w |= 2ϕ then for all v ∈ W , if wRv then M, v |= ϕ. Suppose (to get a contradiction) that
M, w |= 3¬ϕ. Then there is some v′ such that wRv′ and M, v′ |= ¬ϕ. Therefore, since wRv′

we have M, v′ |= ϕ and M, v′ |= ¬ϕ which means M, v′ 6|= ϕ. But this is a contradiction, so
M, w 6|= 3¬ϕ. Hence, M, w |= ¬3¬ϕ.

We now show that if M, w |= ¬3¬ϕ then M, w |= 2ϕ. Suppose that M, w |= ¬3¬ϕ. Then
there is no state v such that wRv and M, v |= ¬ϕ. Let v be any element of W such that wRv.
Then M, w |= ϕ (since otherwise there would be an accessible state satisfying ¬ϕ). Therefore,
M, w |= 2ϕ. qed

Fact 2.3 2ϕ ∧2ψ → 2(ϕ ∧ ψ) is valid.

Proof. SupposeM = 〈W,R, V 〉 is an arbitrary relational structure and w ∈W an arbitrary state.
We will showM, w |= 2ϕ∧2ψ → 2(ϕ∧ψ). Suppose thatM, w |= 2ϕ∧2ψ. ThenM, w |= 2ϕ and
M, w |= 2ψ. Suppose that v ∈W and wRv. ThenM, v |= ϕ andM, v |= ψ. Hence,M, v |= ϕ∧ψ.
Since v is an arbitrary state accessible from w, we have M, w |= 2(ϕ ∧ ψ). qed

Fact 2.4 (3p ∧3q)→ 3(p ∧ q) is not valid.

Proof. We must find a relational structure that has a state where (3p ∧3q)→ 3(p ∧ q) is false.
Consider the following relational structure:

w1

p w2 q w3

Call this relational structureM. We haveM, w1 |= 3p∧3q (why?), butM, w1 6|= 3(p∧q) (why?).
Hence, M, w1 6|= (3p ∧3q)→ 3(p ∧ q). qed
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Question 2.5 Determine which of the following formulas valid (prove your answers):

1. 2ϕ→ 3ϕ

2. 2(ϕ ∨ ¬ϕ)

3. 2(ϕ→ ψ)→ (2ϕ→ 2ψ)

4. 2ϕ→ ϕ

5. ϕ→ 23ϕ

6. 3(ϕ ∨ ψ)→ 3ϕ ∨3ψ

We can now see why the two formalizations of Aristotle’s Sea Battle Argument (cf. Exercise
1.2) are not “equivalent”. They would be the “same” if 2(A → B) is (modally) equivalent to
A → 2B. That is if 2(A → B) ↔ (A → 2B) is valid. The following relational structure shows
that this is not the case:

A,B

w1

C

w2

Here 2(A → B) is true at w1 but A → 2B is not true at w1 (why?). Furthermore, the second
formalization of Aristotle’s Sea Battle Argument is not valid:

2(A→ B)
2(¬A→ ¬B)
A ∨ ¬A
2B ∨2¬B

To show this, we must find a relational structure that has a state where all of the premises are
true but the conclusion (2B ∨2¬B) is false. The following relational structure does the trick (w1

satisfies all of the premises but not the conclusion):

Aw1

A,B

w2

C

w3

3 Definability

Question 1.8 shows that we can assign to every modal formula ϕ a set of states in a relational
structure M = 〈W,R, V 〉 (i.e., the set V (ϕ) of states where ϕ is true in M). We sometime write
(ϕ)M for this set. What about the converse: given and arbitrary set, when does a formula uniquely
pick out that set?
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Definition 3.1 (Definable Subsets) LetM = 〈W,R, V 〉 be a relational structure. A set X ⊆W
is definable in M provided X = (ϕ)M = {w ∈W | M, w |= ϕ} for some modal formula ϕ. /

Example 3.2 All four of the states in the relational structure below are uniquely defined by a
modal formula:

w2

w1 w4

w3

• {w4} is defined by 2⊥
(w4 is the only “dead-end” state)

• {w3} is defined by 32⊥ ∧22⊥
(w3 can only see a “dead-end” state)

• {w2} is defined by 333>
(w2 is the only state where 3 steps can be taken)

• {w1} is defined by 3(32⊥ ∧22⊥)
(w1 is the only state that can see w3)

Given the above observations, it is not hard to see that all subsets of W = {w1, w2, w3, w4} are
definable (why?). However, note that even in finite relational structures, not all subsets may
be definable. A problem can arise if states cannot be distinguished by modal formulas. For
example, if the reflexive arrow is dropped in the relational structure above, then w2 and w3 cannot
be distinguished by a modal formula (there are ways to formally prove this, but see if you can
informally argue why w2 and w3 cannot be distinguished). /

The next two definitions make precise what it means for two states to be indistinguishable by
a modal formula.

Definition 3.3 (Modal Equivalence) Let M1 = 〈W1, R1, V1〉 and M2 = 〈W2, R2, V2〉 be two
relational structures. We say M1, w2 and M2, w2 are modally equivalent provided

for all modal formulas ϕ, M1, w1 |= ϕ iff M2, w2 |= ϕ

We write M1, w1 ! M2, w2 if M1, w1 and M2, w2 are modally equivalent. (Note that it is
assumed w1 ∈W1 and w2 ∈W2) /

Definition 3.4 (Bisimulation) LetM1 = 〈W1, R1, V1〉 andM2 = 〈W2, R2, V2〉 be two relational
structures. A nonempty relation Z ⊆W1 ×W2 is called a bisimulation provided for all w1 ∈W1

and w2 ∈W2, if w1Zw2 then

1. (atomic harmony) For all p ∈ S, V1(w1, p) = V2(w2, p).

2. (zig) If w1R1v1 then there is a v2 ∈W2 such that w2R2v2 and v1Zv2.

3. (zag) If w2R2v2 then there is a v1 ∈W1 such that w1R1v1 and v1Zv2.

We write M1, w1 ↔M2, w2 if there is a bisimulation relating w1 with w2. /

Definition 3.3 and 3.4 provide two concrete ways to answer the question: when are two states
the same? The following questions are straightforward consequences of the relevant definitions.
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Question 3.5 1. Prove ! and ↔ are equivalence relations.

2. Prove that if X is a definable subset of M = 〈W,R, V 〉, then X is closed under the !
relation (if w ∈ X and M, w !M, v then v ∈ X).

3. Prove that there is a largest bisimulation: given {Zi | i ∈ I} a set of bisimulations relating
the relational structures M1 = 〈W1, R1, V1〉 and M2 = 〈W2, R2, V2〉 (i.e., for each i ∈ I,
Zi ⊆W1 ×W2 satisfies Definition 3.4), show the relation Z =

⋃
i∈I Zi is a bisimulation.

Example 3.6 The dashed lines is a bisimulation between the following two relational structures
(for simplicity, we do assume that all atomic propositions are false):

w1

w2

w3

w4

w5

v1

v2
v3

On the other hand, there is no bisimulation relating the state x and y in the following two relational
structures:

x

y

y

y1

y2

y3

Using Lemma 3.7 below, we can prove that there is no bisimulation relating x and y. We first note
that 2(32⊥∨2⊥) is true at state x but not true at state y. Then by Lemma 3.7, x and y cannot
be bisimilar. /

Lemma 3.7 (Modal Invariance Lemma) Suppose M1 = 〈W1, R1, V1〉 and M2 = 〈W2, R2, V2〉
are relational structures. For all w ∈W1 and v ∈W2, if M1, w ↔M2, v then M1, w !M2, v.

Proof. Suppose that M1, w ↔M2, v. Then, there is a bisimulation Z such that wZv. The proof
is by induction on the structure of ϕ. The base case is when ϕ is p, an atomic proposition. By
the atomic harmony condition, since wZv, we have V1(w, p) = V2(v, p). Hence, M1, w |= p iff
M2, v |= p.

There are three cases:
Case 1: ϕ is ψ1 ∧ ψ2. Then,
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M1, w |= ψ1 ∧ ψ2 iff M1, w |= ψ1 and M1, w ∧ ψ2 (Def. of Truth)

iff M2, v |= ψ1 and M2, v |= ψ2 (Induction hypothesis)

iff M2, v |= ψ1 ∧ ψ2 (Def. of truth)

Case 2: ϕ is ¬ψ. Then,

M1, w |= ¬ψ iff M1, w 6|= ψ (Def. of Truth)

iff M2, v 6|= ψ (Induction hypothesis)

iff M2, v |= ¬ψ (Def. of truth)

Case 3: ϕ is 2ψ. Suppose that M1, w |= 2ψ. Then for each w′, if wR1w
′, then M1, w

′ |= ψ. We
will show thatM2, v |= 2ψ. The v′ be any state in W2 with vR2v

′. By the zig condition, there is a
w′ ∈W1 such that wR1w

′ and w′Zv′. SinceM1, w |= 2ψ and wR1w
′, we haveM1, w

′ |= ψ. By the
induction hypothesis, M2, v

′ |= ψ. Since v′ is an arbitrary state with vR2v
′, we haveM2, v |= 2ψ.

The converse direction is similar (it makes use of the zag condition). qed

Lemma 3.8 Suppose M1 = 〈W1, R1, V1〉 and M2 = 〈W2, R2, V2〉 are finite relational structures.
If M1, w1 !M2, w2 then M1, w1 ↔M2, w2.

Proof. We show that ! is a bisimulation. The atomic harmony condition is obvious. We prove
the zag condition. Suppose that M1, w1 !M2, w2, w2R2v2, but there is no v1 such that w1R1v1
and M1, v1 ! M2, v2. Note that there are only finitely many states that are accessible from
w1. That is, {w | w1R1w} is a finite set. Suppose that {w | w1R1w} = {w1, w2, . . . , wm}. By
assumption, for each wi we have M1, w

i 6! M2, v2. Hence, for each wi, there is a formula ϕi
such that M1, w

i 6|= ϕi but M2, v2 |= ϕi. Then, M2, v2 |=
∧
i=1,...,m ϕi. Since w2R2v2, we have

M2, w2 |= 3
∧
i=1,...,m ϕi. Therefore,M1, w1 |= 3

∧
i=1,...,m ϕi. But this is a contradiction, since the

only states accessible from w1 are w1, . . . , wm, and for each wi there is a ϕi such thatM1, w
i 6|= ϕi.

The proof of the zag condition is similar. qed

The modal invariance Lemma (Lemma 3.7) can be used to prove what can and cannot be
expressed in the basic modal language.

Fact 3.9 Let M = 〈W,R, V 〉 be a relational structure. The universal operator is a unary operator
Aϕ defined as follows:

M, w |= Aϕ iff for all v ∈W , M, v |= ϕ

The universal operator A is not definable in the basic modal language.

Proof. Suppose that the universal operator is definable in the basic modal language. Then there
is a basic modal formula α(·) such2 that for any formula ϕ and any relational structure M with
state w, we have M, w |= Aϕ iff M, w |= α(ϕ). Consider the relational structure M = 〈W,R, V 〉
with W = {w1, w2}, R = {(w1, w2)} and V (w1, p) = V (w2, p) = 1. Note that M, w1 |= Ap. Since
the universal operator is assumed to be defined by α(·), we must have M, w1 |= α(p). Consider
the relational structure M′ = 〈W ′, R′, V ′〉 with W ′ = {v1, v2, v3}, R′ = {(v1, v2), (v3, v1)} and
V ′(v1, p) = V ′(v2, p) = 1. Note that Z = {(w1, v2), (w2, v2)} is a bismulation relating w1 and v1
(i.e., M, w1 ↔M′, v1). These relational structures and bisimulation is pictured below:

2The notation α(·) means that α is a basic modal formula with “free slots” such that α(ϕ) is a well formed modal
formula with ϕ plugged into the free slots.
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pw1

pw2

p v1

p v2 p v3

By Lemma 3.7, M, w1 !M′, v1. Therefore, since α(p) is a formula of the basic modal language
andM, w1 |= α(p), we haveM′, v1 |= α(p). Since α(p) defines the universal operator,M′, v1 |= Ap,
which is a contradiction. Hence, A is not definable in the basic modal language. qed

Fact 3.10 Let M = 〈W,R, V 〉 be a relational structure. Define the “exists two” operator 32ϕ as
follows:

M, w |= 32ϕ iff there is v1, v2 ∈W such that v1 6= v2, M, v1 |= ϕ and M, v2 |= ϕ

The exist two 32 operator is not definable in the basic modal language.

Proof. Suppose that the 32 is definable in the basic modal language. Then there is a basic
modal formula α(·) such that for any formula ϕ and any relational structure M with state w,
we have M, w |= 32ϕ iff M, w |= α(ϕ). Consider the relational structure M = 〈W,R, V 〉 with
W = {w1, w2, w3}, R = {(w1, w2), (w1, w3)} and V (w2, p) = V (w3, p) = 1. Note thatM, w1 |= 32p.
Since 32 is assumed to be defined by α(·), we must have M, w1 |= α(p). Consider the relational
structure M′ = 〈W ′, R′, V ′〉 with W ′ = {v1, v2}, R′ = {(v1, v2)} and V ′(v2, p) = 1. Note that
Z = {(w1, v2)} is a bismulation relating w1 and v1 (i.e., M, w1 ↔ M′, v1). By Lemma 3.7,
M, w1 ! M′, v1. Therefore, since α(p) is a formula of the basic modal language and M, w1 |=
α(p), we haveM′, v1 |= α(p). Since α(·) defines 32,M′, v1 |= 32p, which is a contradiction. Hence,
32 is not definable in the basic modal language. qed

3.1 Defining Classes of Structures

The basic modal language can also be used to define classes of structures.

Definition 3.11 (Frame) A pair 〈W,R〉 with W a nonempty set of states and R ⊆ W × W
is called a frame. Given a frame F = 〈W,R〉, we say the model M is based on the frame
F = 〈W,R〉 if M = 〈W,R, V 〉 for some valuation function V . /

Definition 3.12 (Frame Validity) Given a frame F = 〈W,R〉, a modal formula ϕ is valid on
F , denoted F |= ϕ, provided M |= ϕ for all models M based on F . /

Suppose that P is a property of relations (eg., reflexivity or transitivity). We say a frame
F = 〈W,R〉 has property P provided R has property P . For example,

• F = 〈W,R〉 is called a reflexive frame provided R is reflexive, i.e., for all w ∈W , wRw.

• F = 〈W,R〉 is called a transitive frame provided R is transitive, i.e., for all w, x, v ∈W , if
wRx and xRv then wRv.
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Definition 3.13 (Defining a Class of Frames) A modal formula ϕ defines the class of frames
with property P provided for all frames F , F |= ϕ iff F has property P . /

Remark 3.14 Note that if F |= ϕ where ϕ is some modal formula, then F |= ϕ∗ where ϕ∗ is any
substitution instance of ϕ. That is, ϕ∗ is obtained by replacing sentence letters in ϕ with modal
formulas. In particular, this means, for example, that in order to show that F 6|= 2ϕ→ it is enough
to show that F 6|= 2p→ p where p is a sentence letter. (This will be used in the proofs below).

Fact 3.15 2ϕ→ ϕ defines the class of reflexive frames.

Proof. We must show for any frame F , F |= 2ϕ→ ϕ iff F is reflexive.

(⇐) Suppose that F = 〈W,R〉 is reflexive and let M = 〈W,R, V 〉 be any model based on F .
Given w ∈ W , we must show M, w |= 2ϕ → ϕ. Suppose that M, w |= 2ϕ. Then for all v ∈ W ,
if wRv then M, v |= ϕ. Since R is reflexive, we have wRw. Hence, M, w |= ϕ. Therefore,
M, w |= 2ϕ→ ϕ, as desired.

(⇒) We argue by contraposition. Suppose that F is not reflexive. We must show F 6|= 2ϕ → ϕ.
By the above Remark, it is enough to show F 6|= 2p → p for some sentence letter p. Since F is
not reflexive, there is a state w ∈ W such that it is not the case that wRw. Consider the model
M = 〈W,R, V 〉 based on F with V (v, p) = 1 for all v ∈ W such that v 6= w. Then M, w |= 2p
since, by assumption, for all v ∈ W if wRv, then v 6= w and so V (v, p) = 1. Also, notice that by
the definition of V , M, w 6|= p. Therefore, M, w |= 2p ∧ ¬p, and so, F 6|= 2p→ p. qed

Fact 3.16 2ϕ→ 22ϕ defines the class of transitive frames.

Proof. We must show for any frame F , F |= 2ϕ→ 22ϕ iff F is transitive.

(⇐) Suppose that F = 〈W,R〉 is transitive and let M = 〈W,R, V 〉 be any model based on F .
Given w ∈ W , we must show M, w |= 2ϕ → 22ϕ. Suppose that M, w |= 2ϕ. We must show
M, w |= 22ϕ. Suppose that v ∈W and wRv. We must showM, v |= 2ϕ. To that end, let x ∈W
be any state with vRx. Since R is transitive and wRv and vRx, we have wRx. SinceM, w |= 2ϕ,
we have M, x |= ϕ. Therefore, since x is an arbitrary state accessible from v, M, v |= 2ϕ. Hence,
M, w |= 22ϕ, and so, M, w |= 2ϕ→ 22ϕ, as desired.

(⇒) We argue by contraposition. Suppose that F is not transitive. We must show F 6|= 2ϕ→ 22ϕ.
By the above Remark, it is enough to show F 6|= 2p → 22p for some sentence letter p. Since
F is not transitive, there are states w, v, x ∈ W with wRv and vRx but it is not the case that
wRx. Consider the model M = 〈W,R, V 〉 based on F with V (y, p) = 1 for all y ∈ W such that
y 6= x. Since M, x 6|= p and wRv and vRx, we have M, w 6|= 22p. Furthermore, M, w |= 2p since
the only state where p is false is x and it is assumed that it is not the case that wRx. Therefore,
M, w |= 2p ∧ ¬22p, and so, F 6|= 2p→ 22p, as desired. qed

Question 3.17 Determine which class of frames are defined by the following modal formulas (prove
your answer).

1. 2ϕ→ 3ϕ
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2. 3ϕ→ 2ϕ

3. ϕ→ 23ϕ

4. 2(2ϕ→ ϕ)

5. 32ϕ→ 23ϕ

4 The Minimal Modal Logic

For a complete discussion of this material, consult Chapter 5 of Modal Logic for Open Minds by
Johan van Benthem.

Definition 4.1 (Substitution) A substitution is a function from sentence letters to well formed
modal formulas (i.e., σ : S → L). We extend a substitution σ to all formulas ϕ by recursion as
follows (we write ϕσ for σ(ϕ)):

1. σ(⊥) = ⊥

2. σ(¬ϕ) = ¬σ(ϕ)

3. σ(ϕ ∧ ψ) = σ(ϕ) ∧ σ(ψ)

4. σ(2ϕ) = 2σ(ϕ)

5. σ(3ϕ) = 3σ(ϕ) /

For example, if σ(p) = 23(p ∧ q) and σ(q) = p ∧2q then

(2(p ∧ q)→ 2p)σ = 2((23(p ∧ q)) ∧ (p ∧2q))→ 2(23(p ∧ q))

Definition 4.2 (Tautology) A modal formula ϕ is called a (propositional) tautology if ϕ =
(α)σ where σ is a substition, α is a formula of propositional logic and α is a tautology. /

For example, 2p → (3(p ∧ q) → 2p) is a tautology because a → (b → a) is a tautology in the
language of propositional logic and

(a→ (b→ a))σ = 2p→ (3(p ∧ q)→ 2p)

where σ(a) = 2p and σ(b) = 3(p ∧ q).

Definition 4.3 (Modal Deduction) A modal deduction is a finite sequence of formulas 〈α1, . . . , αn〉
where for each i ≤ n either

1. αi is a tautology

2. αi is a substitution instance of 2(p→ q)→ (2p→ 2q)

3. αi is of the form 2αj for some j < i

4. αi follows by modus ponens from earlier formulas (i.e., there is j, k < i such that αk is of the
form αj → αi).
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We write `K ϕ if there is a deduction containing ϕ. /

The formula in item 2. above is called the K axiom and the application of item 3. is called the
rule of necessitation.

Fact 4.4 `K 2(ϕ ∧ ψ)→ (2ϕ ∧2ψ)

Proof.

1. ϕ ∧ ψ → ϕ tautology
2. 2((ϕ ∧ ψ)→ ϕ) Necessitation 1
3. 2((ϕ ∧ ψ)→ ϕ)→ (2(ϕ ∧ ψ)→ 2ϕ) Substitution instance of K
4. 2(ϕ ∧ ψ)→ 2ϕ MP 2,3
5. ϕ ∧ ψ → ψ tautology
6. 2((ϕ ∧ ψ)→ ψ) Necessitation 5
7. 2((ϕ ∧ ψ)→ ϕ)→ (2(ϕ ∧ ψ)→ 2ψ) Substitution instance of K
8. 2(ϕ ∧ ψ)→ 2ψ MP 5,6
9. (a→ b)→ ((a→ c)→ (a→ (b ∧ c))) tautology (a := 2(ϕ ∧ ψ), b := 2ϕ, c := 2ψ)
10. (a→ c)→ (a→ (b ∧ c)) MP 4,9
11. 2(ϕ ∧ ψ)→ 2ϕ ∧2ψ MP 8,10

adfasd qed

Fact 4.5 If `K ϕ→ ψ then `K 2ϕ→ 2ψ

Proof.

1. ϕ→ ψ assumption
2. 2(ϕ→ ψ) Necessitation 1
3. 2(ϕ→ ψ)→ (2ϕ→ 2ψ) Substitution instance of K
4. 2ϕ→ 2ψ MP 2,3

adfasd qed

Definition 4.6 (Modal Deduction with Assumptions) Let Σ be a set of modal formulas. A
modal deduction of ϕ from Σ, denoted Σ `K ϕ is a finite sequence of formulas 〈α1, . . . , αn〉
where for each i ≤ n either

1. αi is a tautology

2. αi ∈ Σ

3. αi is a substitution instance of 2(p→ q)→ (2p→ 2q)

4. αi is of the form 2αj for some j < i and `K αj

5. αi follows by modus ponens from earlier formulas (i.e., there is j, k < i such that αk is of the
form αj → αi). /

Remark 4.7 Note that the side condition in item 4. in the above definition is crucial. Without
it, one application of Necessitation shows that {p} `K 2p. Using the Deduction Theorem, we have
Σ ∪ {α} `K β implies Σ `K α→ β, we can conclude that `K p→ 2p. But, clearly p→ 2p cannot
be a theorem (why?).
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Definition 4.8 (Logical Consequence) Suppose that Σ is a set of modal formulas. We say ϕ is
a logical consequence of Σ, denoted Σ |= ϕ provided for all frames F , if F |= α for each α ∈ Σ,
then F |= ϕ. /

Theorem 4.9 (Soundness) If Σ `K ϕ then Σ |= ϕ.

Proof. The proof is by induction on the length of derivations. See Chapter 5 in Modal Logic for
Open Minds and your lecture notes. qed

Theorem 4.10 (Completeness) If Σ |= ϕ then Σ `K ϕ.

Proof. See Chapter 5 in Modal Logic for Open Minds and your lecture notes for a proof. qed

Remark 4.11 (Alternative Statement of Soundness and Completeness) Suppose that Σ is
a set of modal formulas. Define the minimal modal logic as the smallest set ΛK(Σ) of modal formu-
las extending Σ that (1) contains all tautologies, (2) contains the formula 2(p→ q)→ (2p→ 2q),
(3) is closed under substitutions, (4) is closed under the Necessitation rule (i.e., if ϕ ∈ ΛK is deriv-
able without premises – `K ϕ – then 2ϕ ∈ ΛK) and (4) is closed under Modus Ponens. Suppose
F(Σ) = {ϕ | Σ |= ϕ}. Then, soundness and completeness states that ΛK(Σ) = F(Σ).

5 Proof of Completeness

We start by reminding you of the key definitions and facts about maximally consistent sets (recall
the Fitting notes on propositional logic).

• Let K denote the minimal modal logic and ` ϕ mean ϕ is derivable in K. If Γ is a set of
formulas, we write Γ ` ϕ if ` (ψ1 ∧ · · · ∧ ψk)→ ϕ for some finite set ψ1, . . . , ψk ∈ Γ.

• Let Γ be a set of formulas. If F is a frame, then we write F |= Γ for F |= ϕ for each ϕ ∈ Γ.
We write Γ |= ϕ provided for all frames F , if F |= Γ then F |= ϕ.

• A set of formulas Γ is consistent provided Γ 6` ⊥.

• Γ is a maximally consistent set if Γ is consistent and for each ϕ ∈ L either ϕ ∈ Γ of
¬ϕ ∈ Γ. Alternatively, Γ is consistent and every Γ′ such that Γ ⊆ Γ′ is inconsistent.

• A logic is strongly complete if Γ |= ϕ implies Γ ` ϕ. It is weakly complete if |= ϕ implies
` ϕ. Strong completeness implies weak completeness, but weak completeness does not imply
strong completeness.

Recall the following key facts about maximally consistent sets. Suppose that Γ is a maximally
consistent set,

1. If ` ϕ then ϕ ∈ Γ

2. If ϕ→ ψ ∈ Γ and ϕ ∈ Γ then ψ ∈ Γ

3. ¬ϕ ∈ Γ iff ϕ 6∈ Γ

15



4. ϕ ∧ ψ ∈ Γ iff ϕ ∈ Γ and ψ ∈ Γ

5. ϕ ∨ ψ ∈ Γ iff ϕ ∈ Γ or ψ ∈ Γ

Lemma 5.1 (Lindenbaum’s Lemma) For each consistent set Γ, there is a maximally consistent
set Γ′ such that Γ ⊆ Γ′. In other words, every consistent set Γ can be extended to a maximally
consistent set.

Definition 5.2 (Canonical Model) The canonical model for K is the modelMc = 〈W c, Rc, V c〉
where

• W c = {Γ | Γ is a maximally consistent set}

• ΓRc∆ iff Γ2 = {ϕ | 2ϕ ∈ Γ} ⊆ ∆

• V c(p) = {Γ | p ∈ Γ} /

Lemma 5.3 (Truth Lemma) For every ϕ ∈ L, Mc,Γ |= ϕ iff ϕ ∈ Γ

Proof. The proof is by induction on the structure of ϕ.
Base Case: ϕ is an atomic proposition p. Then,

Mc,Γ |= p iff Γ ∈ V c(p) (Def. of Truth)

iff p ∈ Γ (Def. of V c)

Induction Step: There are three cases:
Case 1: ϕ is ψ1 ∧ ψ2.

Mc,Γ |= ψ1 ∧ ψ2 iff Mc,Γ |= ψ1 and Mc,Γ |= ψ2 (Def. of Truth)

iff ψ1 ∈ Γ and ψ2 ∈ Γ (Induction Hypothesis)

iff ψ1 ∧ ψ2 ∈ Γ (Property 4. of Max Consistent Sets)

Case 2: ϕ is ¬ψ

Mc,Γ |= ¬ψ iff Mc,Γ 6|= ψ
iff ψ 6∈ Γ (Induction Hypothesis)

iff ¬ψ ∈ Γ (Property 3. of Max Consistent Sets)

Case 3: ϕ is 2ψ. Suppose that 2ψ ∈ Γ. Then for each ∆, if ΓRc∆, then ψ ∈ Γ2 ⊆ ∆. By the
induction hypothesis, Mc,∆ |= ψ. Since this is true for any ∆ with ΓRc∆, we have Mc,Γ |= 2ψ.

Suppose that 2ψ 6∈ Γ. We claim that Γ2∪{¬ψ} is consistent. Suppose not. Then Γ2∪{¬ψ} ` ⊥.
This means, ` (α1 ∧ · · · ∧ αn ∧ ¬ψ)→ ⊥ with each αi ∈ Γ2. By propositional reasoning3, we have
` (α1 ∧ · · · ∧ αn)→ ψ. Using Facts 4.4 and 4.5, we have

` (2α1 ∧ · · · ∧2αn)→ 2ψ

Since each 2αi ∈ Γ, we have 2α1∧· · ·∧2αn ∈ Γ, and so 2ψ ∈ Γ. This contradicts our assumption.
Hence, Γ2 ∪ {¬ψ} is consistent. By Lindenbaum’s Lemma, there is a maximally consistent set ∆
with Γ2 ∪ {¬ψ} ⊆ ∆. By the induction hypothesis, Mc,∆ 6|= ψ. Furthermore, we have ΓRc∆.
Hence, Mc,Γ 6|= 2ψ, as desired. qed

3Here we use the fact that, in propositional logic, if ` (ϕ ∧ ¬ψ)→ ⊥, then ` ϕ→ ψ.
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Theorem 5.4 Every maximally consistent set Γ has a model (i.e., there is a models M and state
w such that for all ϕ ∈ Γ, M, w |= ϕ.

Proof. Suppose that Γ is a consistent set. By Lindenbaum’s Lemma, there is a maximally
consistent set Γ′ such that Γ ⊆ Γ′. Then, by the Truth Lemma, for each ϕ ∈ Γ′, we haveMc,Γ′ |= ϕ.
Then, in particular, every formula in Γ is true at Γ′ in the canonical model. qed

Theorem 5.5 If Γ |= ϕ then Γ ` ϕ

Proof. Suppose that Γ 6` ϕ. Then, Γ∪{¬ϕ} is consistent. By the above theorem, there is a model
of Γ ∪ {¬ϕ}. Hence, Γ 6|= ϕ. qed
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