
CMSC 132:

Object-Oriented Programming II

Recursive Algorithms

Department of Computer Science

University of Maryland, College Park

Recursion

Recursion is a strategy for solving problems

A procedure that calls itself

Approach

If (problem instance is simple / trivial)

Solve it directly

Else

1. Simplify problem instance into smaller

instance(s) of the original problem

2. Solve smaller instance using same algorithm

3. Combine solution(s) to solve original problem

Recursive Algorithm Format

1. Base case

Solve small problem directly

2. Recursive step

Simplify problem into smaller subproblem(s)

Recursively apply algorithm to subproblem(s)

Calculate overall solution

Example – Find

To find an element in an array

Base case

If array is empty, return false

Recursive step

If 1st element of array is given value, return true

Skip 1st element and recur on remainder of array

Example – Count

To count # of elements in an array

Base case

If array is empty, return 0

Recursive step

Skip 1st element and recur on remainder of array

Add 1 to result

Auxiliary/Helper Functions

Some recursive problems require an auxiliary

function

Auxiliary function – the one that actually is

recursive

Example: ArrayExamples.java

Example – Factorial

Factorial definition

n! = n  n-1  n-2  n-3  …  3  2  1

0! = 1

To calculate factorial of n

Base case

If n = 0, return 1

Recursive step

Calculate the factorial of n-1

Return n  (the factorial of n-1)

Example – Factorial

Code

int fact (int n) {

if (n == 0) return 1; // base case

return n * fact(n-1); // recursive step

}

Properties

Recursion relies on the call stack

State of current procedure is saved when

procedure is recursively invoked

Every procedure invocation gets own stack space

Any problem solvable with recursion may be

solved with iteration (and vice versa)

Use iteration with explicit stack to store state

Algorithm may be simpler for one approach

Recursion vs. Iteration

Recursive algorithm

int fact (int n) {

if (n == 0) return 1;

return n * fact(n-1);

}

Recursive algorithm is closer to factorial definition

Iterative algorithm

int fact (int n) {

int i, res;

res = 1;

for (i=n; i>0; i--) {

res = res * i;

}

return res;

}

Example – Towers of Hanoi

Problem

Move stack of disks between pegs

Can only move top disk in stack

Only allowed to place disk on top of larger disk

Example – Towers of Hanoi

To move a stack of n disks from peg X to Y

Base case

If n = 1, move disk from X to Y

Recursive step

1. Move top n-1 disks from X to 3rd peg

2. Move bottom disk from X to Y

3. Move top n-1 disks from 3rd peg to Y

Iterative algorithm would take much longer to describe!

Recursion vs. Iteration

Iterative algorithms

May be more efficient

No additional function calls

Run faster, use less memory

Recursion vs. Iteration

Recursive algorithms

Higher overhead

Time to perform function call

Memory for call stack

May be simpler algorithm

Easier to understand, debug, maintain

Natural for backtracking searches

Suited for recursive data structures

Trees, graphs…

Making Recursion Work

Designing a correct recursive algorithm

Verify

1. Base case is

Recognized correctly

Solved correctly

2. Recursive case

Solves 1 or more simpler subproblems

Can calculate solution from solution(s) to

subproblems

Uses principle of proof by induction

Requirements

Must have

Small version of problem solvable without recursion

Strategy to simplify problem into 1 or more smaller

subproblems

Ability to calculate overall solution from solution(s)

to subproblem(s)

Types of Recursion

Tail recursion

Single recursive call at end of function

Example

int tail(int n) {

…

return function(tail(n-1));

}

Can easily transform to iteration (loop)

Types of Recursion

Non-tail recursion

Recursive call(s) not at end of function

Example

int nontail(int n) {

…

x = nontail(n-1) ;

y = nontail(n-2) ;

z = x + y;

return z;

}

Can transform to iteration using explicit stack

Possible Problems – Infinite Loop

Infinite recursion

If recursion not applied to simpler problem

int bad (int n) {

if (n == 0) return 1;

return bad(n);

}

Will infinite loop

Eventually halt when runs out of (stack) memory

Stack overflow

Possible Problems – Efficiency

May perform excessive computation

If recomputing solutions for subproblems

Example

Fibonacci numbers

fibonacci(0) = 1

fibonacci(1) = 1

fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)

Possible Problems – Efficiency

Recursive algorithm to calculate fibonacci(n)

If n is 0 or 1, return 1

Else compute fibonacci(n-1) and fibonacci(n-2)

Return their sum

Simple algorithm  exponential time O(2n)

Computes fibonacci(1) 2n times

Can solve efficiently using

Iteration

Dynamic programming

Will examine different algorithm strategies later…

Examples of Recursive Algorithms

Binary search

Quicksort

N-queens

Fractals

N-Queens

Goal

Place queens on a board

such that every row and

column contains one queen,

but no queen can attack

another queen

Recursive approach

To place queens on NxN

board

Assume you’ve already

placed K queens

Fractals

Goal

Construct shapes using a

simple recursive definition

with a natural appearance

Properties

Appears similar at all scales

of magnification

Therefore “infinitely

complex”

Not easily described in

Euclidean geometry

Mandelbrot Set

