CMSC 132: Object-Oriented Programming II

Recursive Algorithms

Department of Computer Science University of Maryland, College Park

Recursion

- Recursion is a strategy for solving problems
 - A procedure that calls itself
- Approach
 - If (problem instance is simple / trivial) Solve it directly
 - Else
 - 1. Simplify problem instance into smaller instance(s) of the original problem
 - 2. Solve smaller instance using same algorithm
 - 3. Combine solution(s) to solve original problem

Recursive Algorithm Format

- 1. Base case
 - Solve small problem directly
- 2. Recursive step
 - Simplify problem into smaller subproblem(s)
 - Recursively apply algorithm to subproblem(s)
 - Calculate overall solution

- **To find an element in an array**
 - Base case
 - If array is empty, return false
 - Recursive step
 - If 1st element of array is given value, return true
 - Skip 1st element and recur on remainder of array

- **To count # of elements in an array**
 - Base case
 - If array is empty, return 0
 - Recursive step
 - Skip 1st element and recur on remainder of array
 - Add 1 to result

Auxiliary/Helper Functions

- Some recursive problems require an auxiliary function
- Auxiliary function the one that actually is recursive
- Example: ArrayExamples.java

Example – Factorial

Factorial definition

n! = n × n-1 × n-2 × n-3 × ... × 3 × 2 × 1
0! = 1

To calculate factorial of n

Base case

■ If **n** = 0, return 1

Recursive step

Calculate the factorial of n-1

Return n × (the factorial of n-1)

Example – Factorial

Code

```
int fact ( int n ) {
    if ( n == 0 ) return 1;
    return n * fact(n-1);
}
```

// base case
// recursive step

- Recursion relies on the call stack
 - State of current procedure is saved when procedure is recursively invoked
 - Every procedure invocation gets own stack space
- Any problem solvable with recursion may be solved with iteration (and vice versa)
 - Use iteration with explicit stack to store state
 - Algorithm may be simpler for one approach

Recursion vs. Iteration

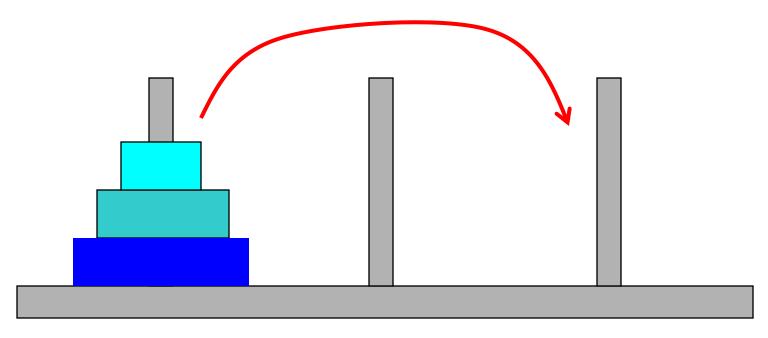
Recursive algorithm Iterative algorithm

Recursive algorithm is closer to factorial definition

Example – Towers of Hanoi

Problem

- Move stack of disks between pegs
- Can only move top disk in stack
- Only allowed to place disk on top of larger disk



Example – Towers of Hanoi

- To move a stack of n disks from peg X to Y
 - **Base case**
 - If n = 1, move disk from X to Y
 - Recursive step
 - 1. Move top n-1 disks from X to 3rd peg
 - 2. Move bottom disk from X to Y
 - 3. Move top n-1 disks from 3rd peg to Y

Iterative algorithm would take much longer to describe!

Recursion vs. Iteration

- Iterative algorithms
 - May be more efficient
 - No additional function calls
 - Run faster, use less memory

Recursion vs. Iteration

- Recursive algorithms
 - Higher overhead
 - Time to perform function call
 - Memory for call stack
 - May be simpler algorithm
 - Easier to understand, debug, maintain
 - Natural for backtracking searches
 - Suited for recursive data structures
 - Trees, graphs...

Making Recursion Work

- Designing a correct recursive algorithm
- Verify
 - 1. Base case is
 - Recognized correctly
 - Solved correctly
 - 2. Recursive case
 - Solves 1 or more simpler subproblems
 - Can calculate solution from solution(s) to subproblems
 - Uses principle of proof by induction

Must have

- Small version of problem solvable without recursion
- Strategy to simplify problem into 1 or more smaller subproblems
- Ability to calculate overall solution from solution(s) to subproblem(s)

Types of Recursion

Tail recursion

Single recursive call at end of function

Example

. . .

}

```
int tail( int n ) {
```

```
return function( tail(n-1) );
```

```
Can easily transform to iteration (loop)
```

Types of Recursion

Non-tail recursion

Recursive call(s) not at end of function

Example

}

```
int nontail( int n ) {
```

```
x = nontail(n-1);
y = nontail(n-2);
z = x + y;
return z;
```

Can transform to iteration using explicit stack

Possible Problems – Infinite Loop

- Infinite recursion
 - If recursion not applied to simpler problem

```
int bad ( int n ) {
    if ( n == 0 ) return 1;
    return bad(n);
}
```

- Will infinite loop
- Eventually halt when runs out of (stack) memory
 - Stack overflow

Possible Problems – Efficiency

- May perform excessive computation
 - If recomputing solutions for subproblems
- Example
 - Fibonacci numbers
 - fibonacci(0) = 1
 - fibonacci(1) = 1
 - fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)

Possible Problems – Efficiency

Recursive algorithm to calculate fibonacci(n)

- If n is 0 or 1, return 1
- Else compute fibonacci(n-1) and fibonacci(n-2)
- Return their sum
- **Simple algorithm** \Rightarrow exponential time O(2ⁿ)
 - Computes fibonacci(1) 2ⁿ times
- Can solve efficiently using
 - Iteration
 - Dynamic programming
 - Will examine different algorithm strategies later...

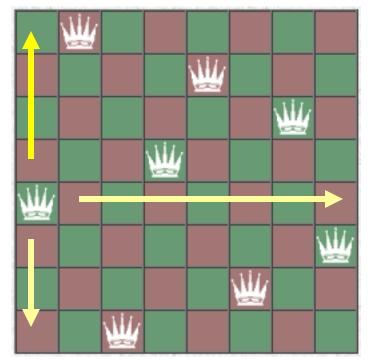
Examples of Recursive Algorithms

- Binary search
- Quicksort
- N-queens
- Fractals

N-Queens

Goal

- Place queens on a board such that every row and column contains one queen, but no queen can attack another queen
- Recursive approach
 - To place queens on NxN board
 - Assume you've already placed K queens

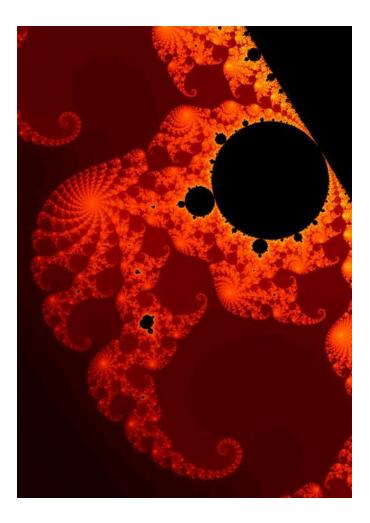


Goal

Construct shapes using a simple recursive definition with a natural appearance

Properties

- Appears similar at all scales of magnification
 - Therefore "infinitely complex"
- Not easily described in Euclidean geometry



Mandelbrot Set