
CMSC 132:

Object-Oriented Programming II

Program Correctness,

Exceptions

Department of Computer Science

University of Maryland, College Park

Overview

Program correctness is determined by the

presence / absence of program defects (errors)

Issues

Types of errors

Testing

Debugging

Exceptions

Program Errors – Compile Time

Compile-time (syntax) errors

Errors in code construction

Lexical (typographical), grammatical, types

Detected during compilation

Usually easy to correct quickly

Examples

Misspelled keyword

Missing or misplaced symbol

Incorrect operator for variable type

Program Errors – Run Time

Run-time errors

Operations illegal / impossible to execute

Detected during program execution

But not detectable at compile time

Treated as exceptions in Java

Example

Division by zero

Array index out of bounds

Using null pointer

Illegal format conversion

Program Errors – Logic

Logic errors

Operations leading to incorrect program state

May (or may not) lead to run-time errors

Problem in design or implementation of algorithm

Examples

Computing incorrect arithmetic value

Ignoring illegal input

Hardest error to handle

Detect by testing

Fix by debugging

Testing

Run program (or part of program) under

controlled conditions to verify behavior

Detects run-time error if exception thrown

Detects logic error if behavior is incorrect

Issues

Selecting test cases

Testing different parts of program

Visibility of program code

Test coverage

…

Test Coverage

Test coverage

Whether code is executed by some test case

Automatically calculated by submit server

For set of tests selected (from link)

E.g., student tests, public tests, student+public tests

For conditionals, reports X/Y where

X = # tests executing True

Y = # tests executing False

Color

Green = executed by some test case

Pink = not executed

Test Coverage Example

Debugging

Process of finding and fixing software errors

After testing detects error

Goal

Determine cause of run-time & logic errors

Correct errors (without introducing new errors)

Similar to detective work

Carefully inspect information in program

Code

Values of variables

Program behavior

Debugging – Approaches

Classic

Insert debugging statements

Trace program control flow

Display value of variables

Modern

IDE (integrated development environment)

Interactive debugger

Interactive Debugger

Capabilities

Provides trace of program execution

Shows location in code where error encountered

Interactive program execution

Single step through code

Run to breakpoints

Displays values of variables

For current state of program

Exceptions

Rare event outside normal behavior of code

Usually a run-time error

Examples

Division by zero

Access past end of array

Out of memory

Number input in wrong format (float vs. integer)

Unable to write output to file

Missing input file

Exception Handling

Performing action in response to exception

Example actions

Ignore exception

Print error message

Request new data

Retry action

Approaches

1. Exit program

2. Exit method returning error code

3. Throw exception

Problem

May not be able to handle error locally

Not enough information in method / class

Need more information to decide action

Handle exception in calling function(s) instead

Decide at application level (instead of library)

Examples

Incorrect data format  ask user to reenter data

Unable to open file  ask user for new filename

Insufficient disk space  ask user to delete files

Will need to propagate exception to caller(s)

Exception Handling – Throw Exception

Approach

Throw exception

Example

A() {

if (error) throw new ExceptionType();

}

B() {

try {

A();

}

catch (ExceptionType e) { ...action... }

}

Java exception backtracks to

caller(s) until matching catch

block found

Exception Handling – Throw Exception

Advantages

Compiler ensures exceptions are caught eventually

No need to explicitly propagate exception to caller

Backtrack to caller(s) automatically

Class hierarchy defines meaning of exceptions

No need for separate definition of error codes

Exception handling code separate & clearly marked

Representing Exceptions in Java

Exceptions represented as

Objects derived from class Throwable

Code

public class Throwable extends Object {

Throwable() // No error message

Throwable(String mesg) // Error message

String getMessage() // Return error mesg

void printStackTrace() { … } // Record methods

… // called & location

}

Object

Error

Throwable

Exception

LinkageError

VirtualMachoneError

ClassNotFoundException

CloneNotSupportedException

IOException

AWTError

…

AWTException

RuntimeException

…

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Unchecked

Checked

NoSuchElementException

…

Representing Exceptions

Java Exception class hierarchy

Unchecked Exceptions

Class Error & RunTimeException

Serious errors not handled by typical program

Usually indicate logic errors

Example

NullPointerException, IndexOutOfBoundsException

Catching unchecked exceptions is optional

Handled by Java Virtual Machine if not caught

Checked Exceptions

Class Exception (except RunTimeException)

Errors typical program should handle

Used for operations prone to error

Example

IOException, ClassNotFoundException

Compiler requires “catch or declare”

Catch and handle exception in method, OR

Declare method can throw exception, force calling

function to catch or declare exception in turn

EXAMPLE: READ_FROM_FILE

Designing & Using Exceptions

Use exceptions only for rare events

Not for common cases  checking end of loop

High overhead to perform catch

Place statements that jointly accomplish task

into single try / catch block

Use existing Java Exceptions if possible

Designing & Using Exceptions

Avoid simply catching & ignoring exceptions

Poor software development style

Example

try {

throw new ExceptionType1();

throw new ExceptionType2();

throw new ExceptionType3();

}

catch (Exception e) { // catches all exceptions

… // ignores exception & returns

}

Exceptions – Examples

FileNotFoundException (java.io)

Request to open file fails

IllegalArgumentException (java.lang)

Method passed illegal / inappropriate argument

IOException (java.io)

Generic I/O error

NullPointerException (java.lang)

Attend to access object using null reference

UnsupportedOperationException (java.lang)

Object does not provide requested operation

Exceptions – Examples

Used in programming project

public void MethodRequiredForProject() {

throw new UnsupportedOperationException(

"You must implement this method.");

}

Behavior

If method is invoked during program execution

Exception is thrown

Of type UnsupportedOperationException

Message string is displayed

Program execution stops unless exception caught

