
1

CMSC 132:
Object-Oriented Programming II

Algorithm Strategies

Department of Computer Science

University of Maryland, College Park

2

Course Evaluations

The CourseEvalUM system will be open for student participation Tuesday, Dec 1,
through Sunday, Dec 13. Please as soon as possible complete the evaluations for
this course. We consider them extremely important.

WHERE TO GO TO COMPLETE THE EVALUATION

https://www.courseevalum.umd.edu/portal

https://www.courseevalum.umd.edu/portal

3

General Concepts

Algorithm strategy

Approach to solving a problem

May combine several approaches

Algorithm structure

Iterative ⇒ execute action in loop

Recursive ⇒ reapply action to subproblem(s)

Problem type

4

Problem Type

Satisfying

Find any satisfactory solution

Example → Find path from A to F

Optimization

Find best solution (vs. cost metric)

Example → Find shortest path from A to E

A

C

E

D
3

8

5

1

72

B 6 4

F

5

Some Algorithm Strategies

Recursive algorithms

Backtracking algorithms

Divide and conquer algorithms

Dynamic programming algorithms

Greedy algorithms

Brute force algorithms

Branch and bound algorithms

Heuristic algorithms

6

Recursive Algorithm

Based on reapplying algorithm to subproblem

Approach

1. Solves base case(s) directly

2. Recurs with a simpler subproblem

3. May need to combine solution(s) to subproblems

7

Backtracking Algorithm

Based on depth-first recursive search

Approach

1. Tests whether solution has been found

2. If found solution, return it

3. Else for each choice that can be made

a) Make that choice

b) Recur

c) If recursion returns a solution, return it

4. If no choices remain, return failure
Tree of alternatives → search tree

8

Backtracking Algorithm – Reachability

Find path in graph from A to F

1. Start with currentNode = A

2. If currentNode has edge to F, return path

3. Else select neighbor node X for currentNode

Recursively find path from X to F
If path found, return path

Else repeat for different X

Return false if no path from any neighbor X

9

Backtracking Algorithm – Path Finding

Search tree

A

C

E

D
3

8

5

1

72

B 6 4

F

A

A→B

A→B→E

A→C A→D

A→C→E A→D→F

A→B→C→E A→D→C→E

A→B→C A→D→C

10

Backtracking Algorithm – Map Coloring

Color a map using four colors so adjacent regions do not share
the same color.

Coloring map of countries

If all countries have been colored return success

Else for each color c of four colors and country n

If country n is not adjacent to a country that has been
colored c

Color country n with color c

Recursively color country n+1

If successful, return success

Return failure

Map from wikipedia –
http://upload.wikimedia.org/wikipedia/commons/thumb/a/a5/Map_of_USA_with_state_names.svg/650px-Map_o
f_USA_with_state_names.svg.png

http://upload.wikimedia.org/wikipedia/commons/thumb/a/a5/Map_of_USA_with_state_names.svg/650px-Map_of_USA_with_state_names.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/a/a5/Map_of_USA_with_state_names.svg/650px-Map_of_USA_with_state_names.svg.png

11

Divide and Conquer

Based on dividing problem into subproblems

Approach

1. Divide problem into smaller subproblems

Subproblems must be of same type

Subproblems do not need to overlap

2. Solve each subproblem recursively

3. Combine solutions to solve original problem
Usually contains two or more recursive calls

12

Divide and Conquer – Sorting

Quicksort

Partition array into two parts around pivot

Recursively quicksort each part of array

Concatenate solutions

Mergesort

Partition array into two parts

Recursively mergesort each half

Merge two sorted arrays into single sorted array

13

Dynamic Programming Algorithm

Based on remembering past results

Approach

1. Divide problem into smaller subproblems

Subproblems must be of same type

Subproblems must overlap

2. Solve each subproblem recursively

May simply look up solution (if previously solved)

3. Combine solutions to solve original problem

4. Store solution to problem
Generally applied to optimization problems

14

Fibonacci Algorithm

Fibonacci numbers

fibonacci(0) = 1

fibonacci(1) = 1

fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)
Recursive algorithm to calculate fibonacci(n)

If n is 0 or 1, return 1

Else compute fibonacci(n-1) and fibonacci(n-2)

Return their sum

Simple algorithm ⇒ exponential time O(2n)

15

Dynamic Programming – Fibonacci

Dynamic programming version of fibonacci(n)

If n is 0 or 1, return 1

Else solve fibonacci(n-1) and fibonacci(n-2)

Look up value if previously computed

Else recursively compute

Find their sum and store

Return result
Dynamic programming algorithm ⇒ O(n) time

Since solving fibonacci(n-2) is just looking up value

16

Dynamic Programming – Shortest Path

Djikstra’s Shortest Path Algorithm

S = ∅
C[X] = 0

C[Y] = ∞ for all other nodes

while (not all nodes in S)
find node K not in S with smallest C[K]

add K to S

for each node M not in S adjacent to K

C[M] = min (C[M] , C[K] + cost of (K,M))

Stores results of
smaller subproblems

17

Greedy Algorithm

Based on trying best current (local) choice

Approach

At each step of algorithm

Choose best local solution

Avoid backtracking, exponential time O(2n)

Hope local optimum lead to global optimum

Example: Coin System

Coins – 30 20 15 1

Find minimum number of coins for 40

Greedy Algorithm fails

18

6
3

Greedy Algorithm – Shortest Path (A to E)

Example

Choose lowest-cost neighbor

Does not yield overall (global) shortest path

A

C

E

D

8

5

1

72

B 4

F

A

A→B

A→B→E Cost ⇒ 6

19

Greedy Algorithm – MST

Kruskal’s Minimal Spanning Tree Algorithm
sort edges by weight (from least to most)

tree = ∅
for each edge (X,Y) in order

if it does not create a cycle

add (X,Y) to tree

stop when tree has N–1 edges

Picks best
local solution
at each step

20

Brute Force Algorithm

Based on trying all possible solutions

Approach

Generate and evaluate possible solutions until

Satisfactory solution is found

Best solution is found (if can be determined)

All possible solutions found
Return best solution

Return failure if no satisfactory solution

Generally most expensive approach

21

Brute Force Algorithm – Shortest Path

Example

Examines all paths in graph

A

C

E

D
3

8

5

1

72

B 6 4

F

A

A→B

A→B→E

A→C A→D

A→C→E A→D→F

A→B→C→E A→D→C→E

A→B→C A→D→C

22

Brute Force Algorithm – TSP

Traveling Salesman Problem (TSP)

Given weighted undirected graph (map of cities)

Find lowest cost path visiting all nodes (cities) once

No known polynomial-time general solution
Brute force approach

Find all possible paths using recursive backtracking

Calculate cost of each path

Return lowest cost path

Complexity O(n!)

23

Branch and Bound Algorithm

Based on limiting search using current solution

Approach

Track best current solution found

Eliminate (prune) partial solutions that can not
improve upon best current solution

Reduces amount of backtracking

Not guaranteed to avoid exponential time O(2n)

24

Branch & Bound Alg. – Shortest Path

Example

Pruned paths beginning with A→B→C & A→D

A

C

E

D
3

8

5

1

72

B 6 4

F

A

A→B

A→B→E

A→C A→D

A→C→E

A→B→C

Cost ⇒ 6 Cost ⇒ 5

25

Branch and Bound – TSP

Branch and bound algorithm for TSP

Find possible paths using recursive backtracking

Track cost of best current solution found

Stop searching path if cost > best current solution

Return lowest cost path
If good solution found early, can reduce search

May still require exponential time O(2n)

26

Heuristic Algorithm

Based on trying to guide search for solution

Heuristic ⇒ “rule of thumb”

Approach

Generate and evaluate possible solutions

Using “rule of thumb”

Stop if satisfactory solution is found
Can reduce complexity

Not guaranteed to yield best solution

27

Heuristic – Shortest Path

Example

Try only edges with cost < 5

Worked…in this case

A

C

E

D
3

8

5

1

72

B 6 4

F

A

A→B A→C

A→C→E

Heuristics for Tile Puzzle

28

29

Heuristic Algorithm – TSP

Heuristic algorithm for TSP

Find possible paths using recursive backtracking

Search 2 lowest cost edges at each node first

Calculate cost of each path

Return lowest cost path from first 100 solutions
Not guaranteed to find best solution

Heuristics used frequently in real applications

30

Summary

Wide range of strategies

Choice depends on

Properties of problem

Expected problem size

Available resources

	CMSC 132: Object-Oriented Programming II
	Course Evaluations
	General Concepts
	Problem Type
	Some Algorithm Strategies
	Recursive Algorithm
	Backtracking Algorithm
	Backtracking Algorithm – Reachability
	Backtracking Algorithm – Path Finding
	Backtracking Algorithm – Map Coloring
	Divide and Conquer
	Divide and Conquer – Sorting
	Dynamic Programming Algorithm
	Fibonacci Algorithm
	Dynamic Programming – Fibonacci
	Dynamic Programming – Shortest Path
	Greedy Algorithm
	Greedy Algorithm – Shortest Path (A to E)
	Greedy Algorithm – MST
	Brute Force Algorithm
	Brute Force Algorithm – Shortest Path
	Brute Force Algorithm – TSP
	Branch and Bound Algorithm
	Branch & Bound Alg. – Shortest Path
	Branch and Bound – TSP
	Heuristic Algorithm
	Heuristic – Shortest Path
	Heuristics for Tile Puzzle
	Heuristic Algorithm – TSP
	Summary

