
1

CMSC 132:
Object-Oriented Programming II

Hashing

Department of Computer Science

University of Maryland, College Park

2

Hashing

Hashing
Hashing function function that maps data to a value (e.g.,
integer)

Hash Code/Hash Value value returned by a hash function

Hash functions can be used to speed up data access

We can achieve O(1) data access using hashing

Approach
Use hash function to convert key into number (hash value) used
as index in hash table

3

Hashing

Hash Table

Array indexed using hash values

Hash table A with size N

Indices of A range from 0 to N-1

Store in A[hashValue % N]

4

Hash Function

Hash Function Function for converting key into hash value

For hash table of size N

Must reduce hash value to 0..N – 1

Can use modulo operator hash value = Math.abs(keyValue % N)

Example Problem

Assign 4 parking spaces to 4 people using

h(key) = keyValue % 4

What happens if we have 4 spaces and 8 people?

Collision Same hash value for multiple keys

Bucket

Each table entry can be referred to as a bucket

In some implementations the bucket is represented by a list (those elements
hashing to the same bucket are placed in the same list)

Properties of a Good Hash Function

Distributes (scatters) values uniformly across range of possible values

It is not expensive to compute

5

Hash Function

Example

hash("apple") = 5
hash("watermelon") = 3
hash("grapes") = 8
hash("kiwi") = 0
hash("strawberry") = 9
hash("mango") = 6
hash("banana") = 2

Perfect hash function

Unique values for each key

kiwi

banana
watermelon

apple
mango

grapes
strawberry

0

1

2

3

4

5

6

7

8

9

6

Hash Function

Suppose now

hash("apple") = 5
hash("watermelon") = 3
hash("grapes") = 8
hash("kiwi") = 0
hash("strawberry") = 9
hash("mango") = 6
hash("banana") = 2

hash(“orange") = 3

Collision

Same hash value for
multiple keys

kiwi

banana
watermelon

apple
mango

grapes
strawberry

0

1

2

3

4

5

6

7

8

9

7

Scattering Hash Values

Hash function should scatter hash values uniformly
across range of possible values

Reduces likelihood of conflicts between keys

Hash(<everything>) = 0

Satisfies definition of hash function

But not very useful (all keys at same location)

Could use Math.abs(keyValue % N)

Might not distribute values well

Particularly if N is a power of 2

8

Scattering Hash Values

Multiplicative congruency method

Produces good hash values

Hash value = Math.abs((a * keyValue) % N)

Where

N is table size

a is large prime number

9

Caution

Use Math.abs(x % N) and not Math.abs(x) % N

Why?
Math.abs(Integer.MIN_VALUE) == Integer.MIN_VALUE !

Will happen 1 in 232 times (on average) for random int values

10

Hashing in Java

Object class has built-in support for hashing

Method int hashCode() provides

Numerical hash value for any object

32-bit signed int

Default hashCode() implementation

Usually just address of object in memory

Can override with new user definition

Must work with equals()

Must satisfy the “hash code contract”

11

Java Hash Code Contract

Java Hash Code Contract

1. If a.equals(b) == true, then we must guarantee

a.hashCode() == b.hashCode()

Converse is NOT required:

 a.hashCode() == b.hashCode()

 does not imply a.equals(b) == true

2. hashCode() Must return same value for an object
each time, provided information used in equals()
comparisons on the object is not modified

12

When to Override hashCode

You must write classes that satisfy the Java Hash Code Contract

Otherwise there will be problems using classes that rely on
hashing (e.g., HashMap, HashSet)

Possible problem – You add an element to a set but cannot find
it during a lookup operation

Does the default equals and hashCode satisfy the contract? Yes!

If you over-ride equals you must ensure that the Contract is still
satisfied, which usually means you must over-ride hashCode

If you implement the Comparable interface you should provide the
appropriate equals method which leads to the appropriate
hashCode method

13

Java hashCode()

Implementing hashCode()

Only include information used by equals()

Else 2 “equal” objects → different hash values

Use as much of that information as you can

Help avoid same hash value for unequal objects

Example hashCode() functions

For pair of Strings

1st letter of 1st str

1st letter of 1st str + 1st letter of 2nd str

Length of 1st str + length of 2nd str

∑ letter(s) of 1st str + ∑ letter(s) of 2nd str

14

Art and Magic of hashCode()

There is no “right” hashCode function

Art involved in finding good hashCode function

Should “scatter” the values uniformly into the table

Should be FAST!

	CMSC 132: Object-Oriented Programming II
	Hashing
	Slide 3
	Hash Function
	Slide 5
	Slide 6
	Scattering Hash Values
	Slide 8
	Caution
	Hashing in Java
	Java Hash Code Contract
	When to Override hashCode
	Java hashCode()
	Art and Magic of hashCode()

