
CMSC 132: 

Object-Oriented Programming II

Abstract Classes

Department of Computer Science

University of Maryland, College Park



Modifier – Abstract

Description

Leave lower-level details to subclass

Defines contract for subclasses

Allows inheritance of other methods/data

Applied to

Methods

Classes

Example

abstract class Foo { // abstract class

abstract void bar( ) { … } // abstract method



Abstract – Motivating Example

Graphics drawing program

Define a base class Shape

Derive various subclasses for specific shapes

Each subclass defines its own method drawMe( )

public class Shape { 

public void drawMe( ) { … } // generic drawing method

}

public class Circle extends Shape {

public void drawMe( ) { … } // draws a Circle

}

public class Rectangle extends Shape {

public void drawMe( ) { … } // draws a Rectangle

}



Motivating Example – Shapes

Implementation

Picture consists of array shapes of type Shape[ ]

To draw the picture, invoke drawMe( ) for all shapes
Shape[ ] shapes = new Shape[…];

shapes[0] = new Circle( … );

shapes[1] = new Rectangle( … );
…

for ( int i = 0; i < shapes.length; i++ )

shapes[i].drawMe( );

Store the shapes to
be drawn in an array.

Draws all the shapes. Each 
call invokes drawMe for the
specific shape.

Heap:

shapes
[0]

[1]

[2]

…

(a Circle object)

(a Rectangle object)

…



Motivating Example – Shapes

Problem

Shape object does not represent a specific shape

Since Shape is just a superclass

How to implement Shape’s drawMe( ) method?

public class Shape { 

void drawMe( ) { … } // generic drawing method

}



Motivating Example – Shapes

Possible solutions

Draw some special “undefined shape”

Ignore the operation

Issue an error message

Throw an exception

Better solution

Abstract drawMe( ) method, abstract Shape class

Tells compiler Shape is incomplete class



Abstract Method

Behaves much like method in interface

Give a signature, but no body

Includes modifier abstract in method signature 

Class descendents provide the implementation



Abstract Class

Required if class contains any abstract method

Includes modifier abstract in the class heading

public abstract class Shape { … }

An abstract class is incomplete

Cannot be created using “new”

Shape s = new Shape( … ); // Illegal! 

But we can create concrete shapes (Circle, 

Rectangle) and assign them to variables of type 

Shape

Shape s = new Circle( … );



Example Solution – Shapes

public abstract class Shape {
private int color;
Shape ( int c ) { color = c; }
public abstract void drawMe( );

}

public class Circle extends Shape {
private double radius;
public Circle( int c, double r ) { … details omitted … }
public void drawMe( ) { … Circle drawing code goes here … }

}

public class Rectangle extends Shape {
private double height;
private double width;
public Rectangle( int c, double h, double w ) { … details omitted … }
public void drawMe( ) { … Rectangle drawing code goes here … }

}

Base class Shape is abstract
because it contains the abstract
(undefined) method drawMe( ).

Derived class Circle is concrete
because it defines drawMe( ).

Derived class Rectangle is concrete
because it defines drawMe( ).

The code for drawing the shapes
given earlier can now be applied.



Abstract – Summary

Abstract methods

Method that contains no body

Subclass provides actual implementation

Abstract classes

Required if any method in class is abstract 

Can contain non-abstract methods

Can be partial description of class


