CMSC 132
Object-Oriented Programming Il

g‘f“fz»o Abstract Classes

/s

RYLPG& Department of Computer Science

University of Maryland, College Park

Modifier — Abstract

B Description

B Leave lower-level details to subclass
B Defines contract for subclasses
B Allows inheritance of other methods/data

E Applied to

E Methods
B Classes

¥ Example

abstract class Foo { /[abstract class
abstract void bar() { ...} // abstract method

Abstract — Motivating Example

F Graphics drawing program

E Define a base class Shape
E Derive various subclasses for specific shapes
B Each subclass defines its own method drawMe()

public class Shape {
public void drawMe() { ...} [/l generic drawing method
}
public class Circle extends Shape {
public void drawMe() { ...} /I draws a Circle
}
public class Rectangle extends Shape {
public void drawMe() { ...} // draws a Rectangle

}

Motivating Example — Shapes

E Implementation

E Picture consists of array shapes of type Shape|]
B To draw the picture, invoke drawMe() for all shapes

Shape][] shapes = new Shapel...];
shapes|[0] = new Circle(...);
shapes[1] = new Rectangle(...);

Store the shapes to
be drawn in an array.

shapes[i].drawMe();

for (inti=0;i < shapes.length; i++)

specific shape.

Draws all the shapes. Each
call invokes drawMe for the

_»[0]

-

I

shapes —

[1] B Y

(a Circle object)

(a Rectangle object)

@y m
4

Heap:

Motivating Example — Shapes

E Problem

B Shape object does not represent a specific shape
m Since Shape Is just a superclass

E How to implement Shape’s drawMe() method?

public class Shape {
void drawMe() { ... } // generic drawing method

}

Motivating Example — Shapes

P Possible solutions

.
® Draw some special “undefined shape” —>

E Ignore the operation
E Issue an error message
E Throw an exception

F Better solution

B Abstract drawMe() method, abstract Shape class
E Tells compiler Shape is incomplete class

Abstract Method

Behaves much like method in interface

Give a signature, but no body

Includes modifier abstract in method signature
Class descendents provide the implementation

Abstract Class

F Required if class contains any abstract method

F Includes modifier abstract in the class heading
public abstract class Shape { ... }

F An abstract class is incomplete

E Cannot be created using “new”
Shape s = new Shape(...); // lllegal!

E But we can create concrete shapes (Circle,
Rectangle) and assign them to variables of type
Shape

Shape s = new Circle(...);

Example Solution — Shapes

: Base class Shape is abstract
public[abstract|class Shape { | because it contains the abstract

private int color; (undefined) method drawMe().
Shape (intc) { color =c; }
public|abstract|void drawMe();

}

Derived class Circle is concrete

public class Circle extends Shape { because it defines drawMe()

private double radius;
public Circle(int c, double r) { ... details omitted ... }
public void drawMe() { ... Circle drawing code goes here ... }

}

public class Rectangle extends Shape { Derived class Rectangle is concrete
private double height; because it defines drawMe().

private double width;
public Rectangle(int c, double h, double w) { ... details omitted ... }
public void drawMe() { ... Rectangle drawing code goes here ... }

! The code for drawing the shapes

given earlier can now be applied.

Abstract — Summary

E Abstract methods

B Method that contains no body
B Subclass provides actual implementation

B Abstract classes

B Required if any method in class is abstract
E Can contain non-abstract methods
E Can be partial description of class

