CMSC 132: Object-Oriented Programming II

Single Source Shortest Path Algorithm

Department of Computer Science University of Maryland, College Park

Single Source Shortest Path

Common graph problem

- **1.** Find path from X to Y with lowest edge weight
- 2. Find path from X to any Y with lowest edge weight
- Useful for many applications
 - Shortest route in map
 - Lowest cost trip
 - Most efficient internet route
 - Dijkstra's algorithm solves problem 2
 - Can also be used to solve problem 1
 - Would use different algorithm if only interested in a single destination

<u>Shortest Path – Dijkstra's Algorithm</u>

Maintain

- Nodes with known shortest path from start
- Cost of shortest path to node K from start ≅ C[K]
 - Only for paths through nodes in S
- Predecessor to K on shortest path = P[K]
 - Updated whenever new (lower) C[K] discovered
 - Remembers actual path with lowest cost

Shortest Path – Intuition for Dijkstra's

- At each step in the algorithm
 - Shortest paths are known for nodes in S
 - Store in C[K] length of shortest path to node K (for all paths through nodes in { S })
 - Add to { S } next closest node

<u>Shortest Path – Intuition for Djikstra's</u>

- Update distance to J after adding node K
 - Previous shortest path to K already in C[K]
 - Possibly shorter path to J by going through node K
 - Compare C[J] with C[K] + weight of (K,J), update C[J] if needed

Shortest Path – Dijkstra's Algorithm

```
S = ≅
```

P[] = none for all nodes

 $C[start] = 0, C[] = \cong$ for all other nodes

```
while (not all nodes in S)
```

```
find node K not in S with smallest C[K]
add K to S
```

```
for each node J not in S adjacent to K
```

```
if ( C[K] + cost of (K,J) < C[J] )
C[J] = C[K] + cost of (K,J)
P[J] = K
```

Optimal solution computed with greedy algorithm

- Initial state
- S = ≅

	СР		
1	0	none	
2	M	none	
3	a	none	
4	M	none	
5	U	none	

Find shortest paths starting from node 1
 S = 1

Update C[K] for all neighbors of 1 not in { S }
 S = { 1 }

Find node K with smallest C[K] and add to S
 S = { 1, 2 }

Update C[K] for all neighbors of 2 not in S
 S = { 1, 2 }

C[3] = min (8, C[2] + (2,3)) = min (8, 5 + 1) = 6 $C[4] = min (\cong , C[2] + (2,4)) = min (\cong , 5 + 10) =$ 15

Find node K with smallest C[K] and add to S

Update C[K] for all neighbors of 3 not in S
 { S } = 1, 2, 3

C[4] = min (15, C[3] + (3,4)) = min (15, 6 + 3) = 9

Find node K with smallest C[K] and add to S
 { S } = 1, 2, 3, 4
 C P
 2
 10

Update C[K] for all neighbors of 4 not in S
 S = { 1, 2, 3, 4 }

 $C[5] = min (\cong , C[4] + (4,5)) = min (\cong , 9 + 9) =$ 18

Find node K with smallest C[K] and add to S
 S = { 1, 2, 3, 4, 5 }

All nodes in S, algorithm is finished

S = { 1, 2, 3, 4, 5 }

- Find shortest path from start to K
 - Start at K
 - Trace back predecessors in P[]
- Example paths (in reverse)
 - ∎ 2 **≅** 1
 - ∎3≅2≅1
 - ■4≃ 3≃ 2≃ 1
 - 5 ≅ 4 ≅ 3 ≅ 2 ≅ 1

	С	Ρ
1	0	none
2	5	1
3	6	2
4	9	3
5	18	4

Typical Problem for Exam/Quiz

Apply Dijkstra's algorithm using **B** as the starting (source) node. Indicate the cost and predecessor for each node in the graph after processing 1, 2 and 3 nodes (**B** and 2 other nodes) have been added to the set of processed nodes (Remember to update the appropriate table entries after processing the 3^{rd} node added). An empty table entry implies an infinite cost or no predecessor. Note: points will be deducted if you simply fill in the entire table instead showing the table at the first three steps.

Answer:

After processing 1 node:

Node	Α	В	C	D	E	F
Cost	2	0		8		7
Predecessor	В			В		В

After processing 2 nodes:

Node	Α	В	С	D	E	F
Cost	2	0		5	22	7
Predecessor	В			A	А	В

After processing 3 nodes:

Node	Α	В	С	D	E	F
Cost	2	0	11	5	22	7
Predecessor	В		D	А	А	В