CMSC 132: Object-Oriented Programming II

Single Source Shortest Path Algorithm

Department of Computer Science
University of Maryland, College Park

Single Source Shortest Path

- Common graph problem

1. Find path from X to Y with lowest edge weight
2. Find path from X to any Y with lowest edge weight

- Useful for many applications
- Shortest route in map
- Lowest cost trip
- Most efficient internet route

Dijkstra's algorithm solves problem 2

- Can also be used to solve problem 1
- Would use different algorithm if only interested in a single destination

Shortest Path - Dijkstra's Algorithm

- Maintain

E Nodes with known shortest path from start \cong S
E Cost of shortest path to node K from start $\cong C[K]$

- Only for paths through nodes in S
- Predecessor to K on shortest path $\cong P[K]$
- Updated whenever new (lower) C[K] discovered
- Remembers actual path with lowest cost

Shortest Path - Intuition for Dijkstra's

- At each step in the algorithm
- Shortest paths are known for nodes in S
- Store in C[K] length of shortest path to node K (for all paths through nodes in \{ S \})

- Add to \{ S \} next closest node

Shortest Path - Intuition for Djikstra's

- Update distance to J after adding node K
- Previous shortest path to K already in C[K]
- Possibly shorter path
 to J by going through node K
- Compare C[J] with C[K] + weight of (K,J), update C[J] if needed

Shortest Path - Dijkstra's Algorithm

$S=\cong$
P[] = none for all nodes
$\mathrm{C}[$ start $]=0, \mathrm{C}[]=\cong$ for all other nodes
while (not all nodes in S)
find node K not in S with smallest $\mathrm{C}[\mathrm{K}]$ add K to S
for each node J not in S adjacent to K

$$
\begin{aligned}
& \text { if }(\mathrm{C}[\mathrm{~K}]+\operatorname{cost} \text { of }(\mathrm{K}, \mathrm{~J})<\mathrm{C}[\mathrm{~J}]) \\
& \mathrm{C}[\mathrm{~J}]=\mathrm{C}[\mathrm{~K}]+\operatorname{cost} \text { of }(\mathrm{K}, \mathrm{~J}) \\
& \mathrm{P}[\mathrm{~J}]=\mathrm{K}
\end{aligned}
$$

Optimal solution computed with greedy algorithm

Dijkstra's Shortest Path Example

- Initial state
- $S=$ ․

	C	P
1	0	none
2	\cong	none
3	\cong	none
4	\cong	none
5	\cong	none

Dijkstra's Shortest Path Example

- Find shortest paths starting from node 1
- $S=1$

	\mathbf{C}	\mathbf{P}
$\mathbf{1}$	$\mathbf{0}$	none
$\mathbf{2}$	\cong	none
3	\cong	none
4	\cong	none
5	\cong	none

Djikstra's Shortest Path Example

- Update $\mathrm{C}[\mathrm{K}]$ for all neighbors of 1 not in \{ S \}
- $S=\{1\}$

	\mathbf{C}	\mathbf{P}
1	0	none
2	5	1
3	8	1
4	\cong	none
5	\cong	none

$C[2]=\min (\cong, C[1]+(1,2))=\min (\cong, 0+5)=5$
$C[3]=\min (\cong, C[1]+(1,3))=\min (\cong, 0+8)=8$

Djikstra's Shortest Path Example

- Find node K with smallest $C[K]$ and add to S
m $S=\{1,2\}$

	\mathbf{C}	\mathbf{P}
1	0	none
2	5	1
3	8	1
4	\cong	none
5	\cong	none

Dijkstra's Shortest Path Example

- Update $\mathrm{C}[\mathrm{K}]$ for all neighbors of 2 not in S
- $S=\{1,2\}$

	\mathbf{C}	\mathbf{P}
$\mathbf{1}$	$\mathbf{0}$	none
$\mathbf{2}$	$\mathbf{5}$	$\mathbf{1}$
$\mathbf{3}$	6	$\mathbf{2}$
$\mathbf{4}$	15	2
$\mathbf{5}$	\cong	none

$\mathrm{C}[3]=\min (8, \mathrm{C}[2]+(2,3))=\min (8,5+1)=6$ $C[4]=\min (\cong, C[2]+(2,4))=\min (\cong, 5+10)=$ 15

Dijkstra's Shortest Path Example

- Find node K with smallest $C[K]$ and add to S
m $S=\{1,2,3\}$

	\mathbf{C}	\mathbf{P}
$\mathbf{1}$	$\mathbf{0}$	none
$\mathbf{2}$	$\mathbf{5}$	$\mathbf{1}$
$\mathbf{3}$	6	$\mathbf{2}$
$\mathbf{4}$	15	2
$\mathbf{5}$	\cong	none

Dijkstra's Shortest Path Example

- Update $\mathrm{C}[\mathrm{K}]$ for all neighbors of 3 not in S
- $\{\mathrm{S}$ \} = 1, 2, 3

	\mathbf{C}	P
$\mathbf{1}$	$\mathbf{0}$	none
2	5	1
3	6	2
4	9	3
5	\cong	none

$C[4]=\min (15, C[3]+(3,4))=\min (15,6+3)=9$

Dijkstra's Shortest Path Example

- Find node K with smallest $C[K]$ and add to S
- $\{S\}=1,2,3,4$

	C	P
1	0	none
2	5	1
3	6	2
4	9	3
5	\cong	none

Dijkstra's Shortest Path Example

- Update $\mathrm{C}[\mathrm{K}]$ for all neighbors of 4 not in S
- $S=\{1,2,3,4\}$

	\mathbf{C}	\mathbf{P}
1	0	none
2	5	1
3	6	2
4	9	3
5	18	4

$C[5]=\min (\cong, C[4]+(4,5))=\min (\cong, 9+9)=$ 18

Dijkstra's Shortest Path Example

- Find node K with smallest $C[K]$ and add to S
m $S=\{1,2,3,4,5\}$

	\mathbf{C}	\mathbf{P}
1	0	none
2	5	1
3	6	2
4	9	3
5	18	4

Dijkstra's Shortest Path Example

- All nodes in S , algorithm is finished
- $S=\{1,2,3,4,5\}$

	C	P
1	0	none
2	5	1
3	6	2
4	9	3
5	18	4

Dijkstra's Shortest Path Example

- Find shortest path from start to K

E Start at K

- Trace back predecessors in P[]
- Example paths (in reverse)
- $2 \cong 1$
- $3 \cong 2 \cong 1$
- $4 \cong 3 \cong 2 \cong 1$

	\mathbf{C}	\mathbf{P}
1	0	none
2	5	1
3	6	2
4	9	3
5	18	4

- $5 \cong 4 \cong 3 \cong 2 \cong 1$

Typical Problem for Exam/Quiz

Apply Dijkstra's algorithm usingB as the starting (source)node. Indicatethe cost and predecessor for each node in the graph after processing 1,2 and 3 nodes (\mathbf{B} and 2 other nodes) have been added to the set of processed nodes (Remember to update the appropriate table entries after processing the $3^{\text {rd }}$ node added). An empty table entry implies an infinite cost or no predecessor. Note: points will be dechucted if you simply fill in the entire table instead showing the table at the first three steps.

Answer:

After processing 1 node:

Node	A	B	C	D	E	F
Cost	2	0		8		7
Predecessor	B			B		B

After processing 2 nodes:

Node	A	B	C	D	E	F
Cost	2	0		5	22	7
Predecessor	B			A	A	B

After processing 3 nodes:

Node	A	B	C	D	E	F
Cost	2	0	11	5	22	7
Predecessor	B		D	A	A	B

