
CMSC 132:

Object-Oriented Programming II

Trees & Binary Search Trees

Department of Computer Science

University of Maryland, College Park

1

Trees

Trees are hierarchical

data structures

One-to-many relationship

between elements

Tree node / element

Contains data

Referred to by only 1

(parent) node

Contains links to any

number of (children)

nodes

Parent node

Children nodes

2

Trees

Terminology

Root  node with no parent

Leaf  all nodes with no children

Interior  all nodes with children

Root node

Leaf nodes

Interior nodes

3

Trees

Terminology

Sibling  node with same parent

Descendent  children nodes & their descendents

Subtree  portion of tree that is a tree by itself

 a node and its descendents

Subtree

Siblings

4

Trees

Terminology

Level  is a measure of a node’s distance from root

Definition of level

If node is the root of the tree, its level is 1

Else, the node’s level is 1 + its parent’s level

Height (depth)  max level of any node in tree

Height = 3

5

Binary Trees

Binary tree

Tree with 0–2 children per node

Left & right child / subtree

Binary Tree

Left

Child

Parent

Right

Child

6

Tree Traversal

Often we want to

1. Find all nodes in tree

2. Determine their relationship

Can do this by

1. Walking through the tree in a prescribed order

2. Visiting the nodes as they are encountered

Process is called tree traversal

7

Tree Traversal

Goal

Visit every node in binary tree

Approaches

Depth first

Preorder  parent before children

Inorder  left child, parent, right child

Postorder  children before parent

Breadth first  closer nodes first

8

Tree Traversal Methods

Pre-order
1. Visit node // first

2. Recursively visit left subtree

3. Recursively visit right subtree

In-order
1. Recursively visit left subtree

2. Visit node // second

3. Recursively right subtree

Post-order
1. Recursively visit left subtree

2. Recursively visit right subtree

3. Visit node // last

9

Tree Traversal Methods

Breadth-first

BFS(Node n) {

Queue Q = new Queue();

Q.enqueue(n); // insert node into Q

while (!Q.empty()) {

n = Q.dequeue(); // remove next node

if (!n.isEmpty()) {

visit(n); // visit node

Q.enqueue(n.Left()); // insert left subtree in Q

Q.enqueue(n.Right());// insert right subtree in Q

} }

10

Tree Traversal Examples

Pre-order (prefix)

+  2 3 / 8 4

In-order (infix)

2  3 + 8 / 4

Post-order (postfix)

2 3  8 4 / +

Breadth-first

+  / 2 3 8 4

+

 /

2 3 8 4

Expression tree

11

Binary Tree Implementation

Using a class to represent a Node

Class Node {

KeyType key;

Node left, right; // null if empty

}

Node root = null; // Empty Tree

Using a Polymorphic Binary Tree

We will talk about this implementation later on

12

Types of Binary Trees

Degenerate

Mostly 1 child / node

Height = O(n)

Similar to linear list

Balanced

Mostly 2 child / node

Height = O(log(n))

2Height - 1 = n (# of nodes)

Useful for searches

Degenerate

binary tree

Balanced

binary tree
13

Binary Search Trees

Key property

Value at node

Smaller values in left subtree

Larger values in right subtree

Example

X > Y

X < Z

Y

X

Z

14

Binary Search Trees

Examples

Binary

search trees

Non-binary

search tree

5

10

30

2 25 45

5

10

45

2 25 30

5

10

30

2

25

45

15

Tree Traversal Examples

Pre-order

44, 17, 32, 78,

50, 48, 62, 88

In-order

17, 32, 44, 48,

50, 62, 78, 88

88

44

17 78

32 50

48 62

Binary search tree

Sorted

order!

Post-order

32, 17, 48, 62,

50, 88, 78, 44

Breadth-first

44, 17, 78, 32,

50, 88, 48, 62
16

Example Binary Searches

Find (2)

5

10

30

2 25 45

5

10

30

2

25

45

2 < 10, left

2 < 5, left

2 = 2, found

2 < 5, left

2 = 2, found

17

Example Binary Searches

Find (25)

5

10

30

2 25 45

5

10

30

2

25

45

25 > 10, right

25 < 30, left

25 = 25, found

25 > 5, right

25 < 45, left

25 < 30, left

25 > 10, right

25 = 25, found

18

Binary Search Properties

Time of search

Proportional to height of tree

Balanced binary tree

O(log(n)) time

Degenerate tree

O(n) time

Like searching linked list / unsorted array

Requires

Ability to compare key values

19

Binary Search Tree Construction

How to build & maintain binary trees?

Insertion

Deletion

Maintain key property (invariant)

Smaller values in left subtree

Larger values in right subtree

20

Binary Search Tree – Insertion

Algorithm

1. Perform search for value X

2. Search will end at node Y (if X not in tree)

3. If X < Y, insert new leaf X as new left subtree for Y

4. If X > Y, insert new leaf X as new right subtree for Y

Observations

O(log(n)) operation for balanced tree

Insertions may unbalance tree

21

Example Insertion

Insert (20)

5

10

30

2 25 45

20 > 10, right

20 < 30, left

20 < 25, left

Insert 20 on left

20

22

Binary Search Tree – Deletion

Algorithm

1. Perform search for value X

2. If X is a leaf, delete X

3. Else // must delete internal node

a) Replace with largest value Y on left subtree

OR smallest value Z on right subtree

b) Delete replacement value (Y or Z) from subtree

Observation

O(log(n)) operation for balanced tree

Deletions may unbalance tree

23

Example Deletion (Leaf)

Delete (25)

5

10

30

2 25 45

25 > 10, right

25 < 30, left

25 = 25, delete

5

10

30

2 45

24

Example Deletion (Internal Node)

Delete (10)

5

10

30

2 25 45

5

5

30

2 25 45

2

5

30

2 25 45

Replacing 10

with largest

value in left

subtree

Replacing 5

with largest

value in left

subtree

Deleting leaf

25

Example Deletion (Internal Node)

Delete (10)

5

10

30

2 25 45

5

25

30

2 25 45

5

25

30

2 45

Replacing 10

with smallest

value in right

subtree

Deleting leaf Resulting tree

26

Building Maps w/ Search Trees

Binary Search trees often used to implement maps

Each non-empty node contains

Key

Value

Left and right child

Need to be able to compare keys

Generic type <K extends Comparable<K>>

Denotes any type K that can be compared to K’s

27

BST (Binary Search Tree) Implementation

Implementing Tree using traditional approach

Based on the BST definition below let’s see how to implement

typical BST Operations (constructor, add, print, find, isEmpty,

isFull, size, height, etc.)

public class BinarySearchTree <K extends Comparable<K>, V> {

private class Node {

private K key;

private V data;

private Node left, right;

public Node(K key, V data) {

this.key = key;

this.data = data;

}

}

private Node root;

}

See code distribution BinaryTreeCode.zip

28

Polymorphic Binary Search Trees

Second approach to implement BST

What do we mean by polymorphic?

Implement two subtypes of Tree

1. EmptyTree

2. NonEmptyTree

Use EmptyTree to represent the empty tree

Rather than null

Invoke methods on tree nodes

Without checking for null (IMPORTANT!)

29

Standard vs. Polymorphic Binary Tree
Class Node {

Node left, right;

}

Node W {

left = null;

right = null;

}

30

Node X {

left = Y;

right = Z;

}

Node Y {

left = null;

right = null;

}

Node Z {

left = null;

right = W;

}

NonEmptyTree X {

left = Y;

right = Z;

}

NonEmptyTree Y {

left = ET ;

right = ET ;

}

NonEmptyTree W {

left = ET ;

right = ET ;

}

NonEmptyTree Z {

left = ET ;

right = W;

}

EmptyTree { }

Class EmptyTree {}

Class NonEmptyTree {

Tree left, right;

}

EmptyTree { }

EmptyTree { }

EmptyTree { } EmptyTree { }

Polymorphic Binary Tree Implementation

Interface Tree {

Tree insert (Value data1) { … }

}

Class EmptyTree implements Tree {

Tree insert (Value data1) { … }

}

Class NonEmptyTree implements Tree {

Value data;

Tree left, right; // Either Empty or NonEmpty

Tree insert (Value data1) { … }

}

31

32

Singleton Design Pattern

Definition

One instance of a class or value accessible globally

Where to use & benefits

Ensure unique instance by defining class final

Access to the instance only via methods provided

EmptyTree class will be a singleton class

33

Singleton Example

public final class MySingleton {

// declare the unique instance of the class

private static MySingleton uniq = new MySingleton();

// private constructor only accessed from this class

private MySingleton() { … }

// return reference to unique instance of class

public static MySingleton getInstance() {

return uniq;

}

}

Using Singleton EmptyTree
Class Node {

Node left, right;

}

Node W {

left = null;

right = null;

}

34

Node X {

left = Y;

right = Z;

}

Node Y {

left = null;

right = null;

}

Node Z {

left = null;

right = W;

}

NonEmptyTree X {

left = Y;

right = Z;

}

NonEmptyTree Y {

left = ET ;

right = ET ;

}

NonEmptyTree W {

left = ET ;

right = ET ;

}

NonEmptyTree Z {

left = ET ;

right = W;

}

EmptyTree ET {

}

Class EmptyTree {}

Class NonEmptyTree {

Tree left, right;

}

35

Polymorphic List Implementation

Let’s see a polymorphic list implementation

See code distribution PolymorphicListCode.zip

