
CMSC 132:
Object-Oriented Programming II

Heaps & Priority Queues

Department of Computer Science

University of Maryland, College Park

Overview

Binary trees
Complete

Heaps
Insert

getSmallest

Heap applications
Heapsort

Priority queues

Complete Binary Trees

An binary tree (height h) where
Perfect tree to level h-1

Leaves at level h are as far left as possible

h = 2

h = 3

h = 1

Complete Binary Trees

Not Allowed

Basic complete tree shape

Heaps

Two key properties
Complete binary tree

Value at node

Smaller than or equal to values in subtrees

Example heap
X ≤ Y
X ≤ Z

Y

X

Z

Heap & Non-heap Examples

Heaps Non-heaps

6

2

22

8 45 25

6

2

22

8 45 25

8

6 45

5

6 22

25

5

5 45

5

Heap Properties

Heaps are balanced trees
Height = log2(n) = O(log(n))

Can find smallest element easily
Always at top of heap!

Can organize heap to find maximum value
Value at node larger than values in subtrees

Heap can track either min or max, but not both

Heap

Key operations
Insert (X)

getSmallest ()

Key applications
Heapsort

Priority queue

Heap Operations – Insert(X)

Algorithm
1. Add X to end of tree

2. While (X < parent)

Swap X with parent // X bubbles up tree

Complexity
of swaps proportional to height of tree

O(log(n))

Heap Insert Example

Insert (20)

10

30 25

37

10

30 25

37 20

10

20 25

37 30

1) Insert to
end of tree

2) Compare to parent,
swap if parent key larger

3) Insert
complete

Heap Insert Example

Insert (8)

10

30 25

37

10

30 25

37 8

10

8 25

37 30

8

10 25

37 30

1) Insert to
end of tree

2) Compare to parent,
swap if parent key larger

3) Insert
complete

Heap Operation – getSmallest()

Algorithm
1. Get smallest node at root

2. Replace root with X at end of tree

3. While (X > child)

Swap X with smallest child // X drops down tree

4. Return smallest node

Complexity
swaps proportional to height of tree

O(log(n))

Heap GetSmallest Example

getSmallest ()

8

10 25

37

30

10 25

37

10

30 25

3730

1) Replace root
with end of tree

2) Compare node to
children, if larger swap

with smallest child

3) Repeat swap
if needed

Heap GetSmallest Example

getSmallest ()

8

10 25

30

37

10 25

30

10

37 25

3037

1) Replace root
with end of tree

2) Compare node to
children, if larger swap

with smallest child

3) Repeat swap
if needed

10

30 25

37

Heap Implementation

Can implement heap as array
Store nodes in array elements

Assign location (index) for elements using formula

Heap Implementation

Observations
Compact representation

Edges are implicit (no storage required)

Works well for complete trees (no wasted space)

Heap Implementation

Calculating node locations
Array index i starts at 0

Parent(i) =  (i – 1) / 2 
LeftChild(i) = 2 × i +1

RightChild(i) = 2 × i +2

Heap Implementation

Example
Parent(1) =  (1 – 1) / 2  =  0 / 2  = 0

Parent(2) =  (2 – 1) / 2  =  1 / 2  = 0

Parent(3) =  (3 – 1) / 2  =  2 / 2  = 1

Parent(4) =  (4 – 1) / 2  =  3 / 2  = 1

Parent(5) =  (5 – 1) / 2  =  4 / 2  = 2

Heap Implementation

Example
LeftChild(0) = 2 × 0 +1 = 1

LeftChild(1) = 2 × 1 +1 = 3

LeftChild(2) = 2 × 2 +1 = 5

Heap Implementation

Example
RightChild(0) = 2 × 0 +2 = 2

RightChild(1) = 2 × 1 +2 = 4

Heap Application – Heapsort

Use heaps to sort values
Heap keeps track of smallest element in heap

Algorithm
1. Create heap

2. Insert values in heap

3. Remove values from heap (in ascending order)

Complexity
O(nlog(n))

Heapsort Example

Input
11, 5, 13, 6, 1

View heap during insert, removal
As tree

As array

Heapsort – Insert Values

Heapsort – Remove Values

Heapsort – Insert in to Array 1

Input
11, 5, 13, 6, 1

Index = 0 1 2 3 4

Insert 11 11

Heapsort – Insert in to Array 2

Input
11, 5, 13, 6, 1

Index = 0 1 2 3 4

Insert 5 11 5

Swap 5 11

Heapsort – Insert in to Array 3

Input
11, 5, 13, 6, 1

Index = 0 1 2 3 4

Insert 13 5 11 13

Heapsort – Insert in to Array 4

Input
11, 5, 13, 6, 1

Index = 0 1 2 3 4

Insert 6 5 11 13 6

Swap 5 6 13 11

…

Heapsort – Remove from Array 1

Input
11, 5, 13, 6, 1

Index = 0 1 2 3 4

Remove root 1 5 13 11 6

Replace 6 5 13 11

Swap w/ child 5 6 13 11

Heapsort – Remove from Array 2

Input
11, 5, 13, 6, 1

Index = 0 1 2 3 4

Remove root 5 6 13 11

Replace 11 6 13

Swap w/ child 6 11 13

Heap Application – Priority Queue

Queue
Linear data structure

First-in First-out (FIFO)

Implement as array / linked list

DequeueEnqueue

Heap Application – Priority Queue

Priority queue
Elements are assigned priority value

Higher priority elements are taken out first

Implement as heap

Enqueue ⇒ insert()

Dequeue ⇒ getSmallest()

Dequeue

Enqueue

Priority Queue

Properties
Lower value = higher priority

Heap keeps highest priority items in front

Complexity
Enqueue ⇒ insert() = O(log(n))

Dequeue ⇒ getSmallest() = O(log(n))

For any heap

Heap vs. Binary Search Tree

Binary search tree
Keeps values in sorted order

Find any value

O(log(n)) for balanced tree

O(n) for degenerate tree (worst case)

Heap
Keeps smaller values in front

Find minimum value

O(log(n)) for any heap

	CMSC 132: Object-Oriented Programming II
	Overview
	Complete Binary Trees
	Slide 4
	Heaps
	Heap & Non-heap Examples
	Heap Properties
	Heap
	Heap Operations – Insert(X)
	Heap Insert Example
	Slide 11
	Heap Operation – getSmallest()
	Heap GetSmallest Example
	Slide 14
	Heap Implementation
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Heap Application – Heapsort
	Heapsort Example
	Heapsort – Insert Values
	Heapsort – Remove Values
	Heapsort – Insert in to Array 1
	Heapsort – Insert in to Array 2
	Heapsort – Insert in to Array 3
	Heapsort – Insert in to Array 4
	Heapsort – Remove from Array 1
	Heapsort – Remove from Array 2
	Heap Application – Priority Queue
	Slide 32
	Priority Queue
	Heap vs. Binary Search Tree

