
CMSC 132:

Object-Oriented Programming II

Collection Abstractions &

Java Collections

Department of Computer Science

University of Maryland, College Park

Collection

Programs represent and manipulate

abstractions (chunks of information)

Examples: roster of students, deck of cards, a

Tetromino

One of the most universal abstractions is a

collection

Represents an aggregation of multiple objects

Plus, perhaps, a relation between elements

Examples: list, set, ordered set, map, array, tree

Supporting different operations

Data Structures

Data structure

A way of representing & storing information

Choice of data structure affects

Abstractions supported

Amount of storage required

Which operations can be efficiently performed

Collections may be implemented using many

different data structures

Graph Abstractions

Many-to-many relationship between elements

Each element has multiple predecessors

Each element has multiple successors

Graph abstractions

Undirected graph

Undirected edges

Directed graph

Directed edges

Directed acyclic graph (DAG)

Directed edges, no cycles

Undirected Directed DAG

Tree abstractions

One-to-many relationship between elements

Each element has unique predecessor

Each element has multiple successors

Forest

DAG, but each node has at most one edge to it (from

a parent)

Tree

Forest with only one node (the root) that doesn’t

have a parent

Binary Tree

A tree where each

node has at

most 2 children

Tree Abstractions

Tree

Binary Tree

Sequence Abstractions

One-to-one relationship between elements

Each element has unique predecessor

Each element has unique successor

Sequences or Ordered Collections

List

A sequence of elements

The user of this interface has precise control over

where in the list each element is inserted.

The user can access elements by their integer index

(position in the list), and search for elements in the

list.

Limited Sequences

Queue

Can add only at the tail

Can only access or remove at the head

First-in, First-out (FIFO)

Stack

Can add only at the top

Can only access or remove at the top

Last-in, First-out (LIFO)

Deque: double ended queue

Can add, access or remove at either end

Set Data Structures

No relationship between elements

Elements have no predecessor / successor

Only one copy of element allowed in set

Set B
Set C

Set A

Set Abstractions

Set

E.g., {Mitt, Mike, John, Ron}

Map

Like a set, but each element in the set is mapped to a

value

E.g., {Mitt=280, Mike=243, John=843, Ron=14}

SortedSet

Elements must be comparable, or a comparator

must be provided

Elements can be accessed in order

Java Collection Framework (JCF)

Java provides several interfaces and classes

for manipulating & organizing data

Example: List, Set, Map interfaces

Java Collection Framework consists of

Interfaces

Abstract data types

Implementations

Reusable data structures

Algorithms

Reusable functionality

Collection Hierarchy

Collection Interface

Core operations

Add element

Remove element

Determine size (# of elements)

Iterate through all elements

Additional operations supported by some

collections

Find first element

Find kth element

Find largest element

Sort elements

Collection vs. Collections

Collection

Interface

Root interface of collection hierarchy

Methods: add(), contains(), remove(), size()

Collections

Class

Contains static methods that operate on collections

Methods: shuffle(), copy(), list()

