CMSC 132
Object-Oriented Programming Il

g‘f*“ii“*o Collection Abstractions &
YN Java Collections

RYLE’»Kk

Department of Computer Science
University of Maryland, College Park

Collection

E Programs represent and manipulate
abstractions (chunks of information)

B Examples: roster of students, deck of cards, a
Tetromino

E One of the most universal abstractions is a
collection
E Represents an aggregation of multiple objects
E Plus, perhaps, arelation between elements

B Examples: list, set, ordered set, map, array, tree
E Supporting different operations

Data Structures

B Data structure
E A way of representing & storing information

E Choice of data structure affects

E Abstractions supported
E Amount of storage required
E Which operations can be efficiently performed

E Collections may be implemented using many
different data structures

Graph Abstractions

F Many-to-many relationship between elements

B Each element has multiple predecessors
E Each element has multiple successors

_______ many
< SUCCESSOrs

many E——
predecessors

Graph abstractions

F Undirected graph
B Undirected edges

F Directed graph
B Directed edges

F Directed acyclic graph (DAG)
E Directed edges, no cycles

Undirected Directed DAG

Tree abstractions

F One-to-many relationship between elements

B Each element has unigue predecessor
E Each element has multiple successors

unique
_ predecessor

many
successors

-
.y
-

.
-
-
-
-
-
-
-
-
- -
- P g
-
-
-
-
-
-
-
-
-
-
-
-

i mmasannnea leaves

Tree Abstractions

P Forest

E DAG, but each node has at most one edge to it (from
a parent)

P Tree

E Forest with only one node (the root) that doesn’t
have a parent

E Binary Tree

B A tree where each
node has at

most 2 children Binary Tree

Tree

Sequence Abstractions

F One-to-one relationship between elements

B Each element has unigue predecessor
E Each element has unique successor

first last
unique unique
predecessor successor

Seqguences or Ordered Collections

E List

E A sequence of elements

B The user of this interface has precise control over
where in the list each element is inserted.

E The user can access elements by their integer index
(position in the list), and search for elements in the
list.

Limited Sequences

B Queue

E Can add only at the talil
B Can only access or remove at the head
E First-in, First-out (FIFO)

E Stack

B Can add only at the top
E Can only access or remove at the top
E Last-in, First-out (LIFO)
¥ Deque: double ended queue
B Can add, access or remove at either end

Set Data Structures

E No relationship between elements

B Elements have no predecessor / successor
E Only one copy of element allowed in set

Set Abstractions

E Set
E E.g. {Mitt, Mike, John, Ron}
E Map

E Like a set, but each element in the set is mapped to a
value

E E.g., {Mitt=280, Mike=243, John=843, Ron=14}

E SortedSet

E Elements must be comparable, or a comparator
must be provided

B Elements can be accessed in order

Java Collection Framework (JCF)

F Java provides several interfaces and classes
for manipulating & organizing data
B Example: List, Set, Map interfaces

¥ Java Collection Framework consists of
B Interfaces
m Abstract data types
E Implementations
m Reusable data structures
E Algorithms
m Reusable functionality

HashSet

Collection Hierarchy

< <lpterface >

Collection

extends

= <lnterface > >
List

= <lnterface > >
S5et

= <lnterface > >

Queuwe

T

AN

i
Vector

< <lnterface >

< <Interface>=> i

SortedSet 1 implements
N Deque

N \
e ' >
-] &
LinkedHashSet "

%

[}
Stack

ArrayList

TreaS et

‘ 1
LinkedList

< <lpterface >

Map

N4

¢
LinkedHashMap

< <lnterface >
Sorted Map

HashMap

HashTahble

Collection Interface

F Core operations

B Add element

E Remove element

E Determine size (# of elements)
E Iterate through all elements

¥ Additional operations supported by some
collections

E Find first element

E Find k'h element

B Find largest element
E Sort elements

Collection vs. Collections

E Collection

B Interface
E Root interface of collection hierarchy
B Methods: add(), contains(), remove(), size()

E Collections

m Class
B Contains static methods that operate on collections
B Methods: shuffle(), copy(), list()

