
1

CMSC 132:
Object-Oriented Programming II

Graphs & Graph Traversal

Department of Computer Science

University of Maryland, College Park

2

Graph Data Structures

Many-to-many relationship between elements
Each element has multiple predecessors

Each element has multiple successors

3

Graph Definitions

Node
Element of graph

State

List of adjacent/neighbor/successor nodes

Edge
Connection between two nodes

State

Endpoints of edge

A

4

Graph Definitions

Directed graph
Directed edges

Undirected graph
Undirected edges

5

Graph Definitions

Weighted graph
Weight (cost) associated with each edge

6

Graph Definitions

Path

Sequence of nodes n1, n2, … nk

Edge exists between each pair of nodes ni , ni+1

Example

A, B, C is a path

A, E, D is not a path

7

Graph Definitions

Cycle
Path that ends back at starting node

Example

A, E, A

A, B, C, D, E, A

Simple path
No cycles in path

Acyclic graph
No cycles in graph

8

Graph Definitions

Reachable
Path exists between nodes

Connected graph
Every node is reachable from some node in graph

Unconnected graphs

9

Graph Operations

Traversal (search)
Visit each node in graph exactly once

Usually perform computation at each node

Two approaches

Breadth first search (BFS)

Depth first search (DFS)

10

Breadth-first Search (BFS)

Approach
Visit all neighbors of
node first

View as series of
expanding circles

Keep list of nodes to
visit in queue

Example traversal
1. n

2. a, c, b

3. e, g, h, i, j

4. d, f

11

Breadth-first Tree Traversal

Example traversals starting from 1

1

2 3

4 5 6

7

1

3 2

6 5 4

7

1

2 3

5 6 4

7

Left to right Right to left Random

12

Traversals Orders

Order of successors
For tree

Can order children nodes from left to right

For graph

Left to right doesn’t make much sense

Each node just has a set of successors and
predecessors; there is no order among edges

For breadth first search
Visit all nodes at distance k from starting point

Before visiting any nodes at (minimum) distance k+1
from starting point

13

Depth-first Search (DFS)

Approach
Visit all nodes on path first

Backtrack when path ends

Keep list of nodes to visit
in a stack

Example traversal
1. N

2. A

3. B, C, D, …

4. F…

14

Depth-first Tree Traversal

Example traversals from 1 (preorder)

1

2 6

3 5 7

4

1

4 2

6 5 3

7

1

2 6

4 3 7

5

Left to right Right to left Random

15

Traversal Algorithms

Issue
How to avoid revisiting nodes

Infinite loop if cycles present

Approaches
Record set of visited nodes

Mark nodes as visited

1

2 3

4 ? 5

?

16

Traversal – Avoid Revisiting Nodes

Record set of visited nodes
Initialize { Visited } to empty set

Add to { Visited } as nodes is visited

Skip nodes already in { Visited }

1

2 3

4

V = ∅

1

2 3

4

V = { 1 }

1

2 3

4

V = { 1, 2 }

17

Traversal – Avoid Revisiting Nodes

Mark nodes as visited
Initialize tag on all nodes (to False)

Set tag (to True) as node is visited

Skip nodes with tag = True

F

F F

F

T

F F

F

T

T F

F

18

General Traversal Algorithm

{ Visited } = ∅

{ Discovered } = { 1st node }

while ({ Discovered } ≠ ∅)

take node X out of { Discovered }

if X not in { Visited }

add X to { Visited }

for each successor Y of X

if (Y is not in { Visited })
add Y to { Discovered }

19

Traversal Algorithm Using Tags

for all nodes X
set X.tag = False

{ Discovered } = { 1st node }

while ({ Discovered } ≠ ∅)

take node X out of { Discovered }

if (X.tag = False)
set X.tag = True

for each successor Y of X

if (Y.tag = False)

add Y to { Discovered }

20

Traversal Algorithm with Queue

for all nodes X
X.tag = False

put 1st node in Queue
while (Queue not empty)

take node X out of Queue

if (X.tag = False)
set X.tag = True

for each successor Y of X

if (Y.tag = False)
put Y in Queue

21

Traversal Algorithm with Stack

for all nodes X
X.tag = False

put 1st node in Stack
while (Stack not empty)

pop X off Stack

if (X.tag = False)
set X.tag = True

for each successor Y of X

if (Y.tag = False)

push Y onto Stack

22

BFS vs. DFS Traversal

Implement { Discovered } as Queue
First in, first out

Traverse nodes breadth first

Implement { Discovered } as Stack
First in, last out

Traverse nodes depth first

23

Recursive Traversal Algorithm

Traverse()
for all nodes X

set X.tag = False

Visit (1st node)

Visit (X)

set X.tag = True

for each successor Y of X

if (Y.tag = False)
Visit (Y)

24

Recursive Graph Traversal

Can traverse graph using recursive algorithm
Recursively visit successors

Implicit call stack & backtracking
Results in depth-first traversal

	CMSC 132: Object-Oriented Programming II
	Graph Data Structures
	Graph Definitions
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Graph Operations
	Breadth-first Search (BFS)
	Breadth-first Tree Traversal
	Traversals Orders
	Depth-first Search (DFS)
	Depth-first Tree Traversal
	Traversal Algorithms
	Traversal – Avoid Revisiting Nodes
	Slide 17
	General Traversal Algorithm
	Traversal Algorithm Using Tags
	Traversal Algorithm with Queue
	Traversal Algorithm with Stack
	BFS vs. DFS Traversal
	Recursive Traversal Algorithm
	Recursive Graph Traversal

