CMSC 132:

 Object-Oriented Programming II

Graphs \& Graph Traversal

Department of Computer Science
University of Maryland, College Park

Graph Data Structures

- Many-to-many relationship between elements

E Each element has multiple predecessors
E Each element has multiple successors

Graph Definitions

- Node

Element of graph

- State
- List of adjacent/neighbor/successor nodes
- Edge
- Connection between two nodes

- State
- Endpoints of edge

Graph Definitions

- Directed graph
- Directed edges
- Undirected graph

E Undirected edges

(a) Directed graph

(b) Undirected graph

Graph Definitions

- Weighted graph

E Weight (cost) associated with each edge

Graph Definitions

- Path

E Sequence of nodes $n_{1}, n_{2}, \ldots n_{k}$
E Edge exists between each pair of nodes n_{i}, n_{i+1}
Example

- A, B, C is a path
- A, E, D is not a path

Graph Definitions

- Cycle
- Path that ends back at starting node

E Example
$\square \mathrm{A}, \mathrm{E}, \mathrm{A}$
■ A, B, C, D, E, A

- Simple path
- No cycles in path
- Acyclic graph
- No cycles in graph

Graph Definitions

- Reachable

- Path exists between nodes
- Connected graph

E Every node is reachable from some node in graph

Unconnected graphs

Graph Operations

- Traversal (search)
- Visit each node in graph exactly once

E Usually perform computation at each node

- Two approaches

■ Breadth first search (BFS)
■ Depth first search (DFS)

Breadth-first Search (BFS)

- Approach
- Visit all neighbors of node first
- View as series of expanding circles
- Keep list of nodes to visit in queue
- Example traversal

1. n
2. a, c, b
3. e, g, h, i, j
4.

Breadth-first Tree Traversal

Example traversals starting from 1

Traversals Orders

- Order of successors
- For tree

■ Can order children nodes from left to right

- For graph

■ Left to right doesn't make much sense
■ Each node just has a set of successors and predecessors; there is no order among edges

- For breadth first search
- Visit all nodes at distance k from starting point
- Before visiting any nodes at (minimum) distance k+1 from starting point

Depth-first Search (DFS)

- Approach

E Visit all nodes on path first

- Backtrack when path ends

E Keep list of nodes to visit in a stack

E Example traversal

1. N
2. A
3. B, C, D, \ldots
4. F...

Depth-first Tree Traversal

E Example traversals from 1 (preorder)

Traversal Algorithms

- Issue

E How to avoid revisiting nodes

- Infinite loop if cycles present
- Approaches
- Record set of visited nodes
- Mark nodes as visited

Traversal - Avoid Revisiting Nodes

- Record set of visited nodes
- Initialize \{ Visited \} to empty set
- Add to \{ Visited \} as nodes is visited
- Skip nodes already in \{ Visited \}

$\mathrm{V}=\varnothing$

$$
V=\{1\}
$$

$$
V=\{1,2\}
$$

Traversal - Avoid Revisiting Nodes

- Mark nodes as visited
- Initialize tag on all nodes (to False)
- Set tag (to True) as node is visited
- Skip nodes with tag = True

General Traversal Algorithm

$\{$ Visited $\}=\varnothing$
\{ Discovered \} = \{ 1st node \}
while ($\{$ Discovered $\} \neq \varnothing$)
take node X out of \{ Discovered \}
if X not in $\{$ Visited \}
add X to $\{$ Visited \}
for each successor Y of X

> if (Y is not in $\{$ Visited $\}$) add Y to $\{$ Discovered $\}$

Traversal Algorithm Using Tags

for all nodes X
set X.tag = False
\{ Discovered \} = \{ 1st node \}
while (\{ Discovered \} $\neq \varnothing$)
take node X out of \{ Discovered \}
if (X.tag = False)
set X.tag = True
for each successor Y of X

> if (Y.tag = False) add Y to \{ Discovered \}

Traversal Algorithm with Queue

for all nodes X
X.tag = False
put $1^{s t}$ node in Queue
while (Queue not empty)
take node X out of Queue
if (X.tag = False)
set X.tag = True
for each successor Y of X

$$
\begin{aligned}
& \text { if (Y.tag = False) } \\
& \text { put Y in Queue }
\end{aligned}
$$

Traversal Algorithm with Stack

for all nodes X
X.tag = False
put $1^{s t}$ node in Stack
while (Stack not empty)
pop X off Stack
if (X.tag = False)
set X.tag = True
for each successor Y of X
if (Y.tag = False)
push Y onto Stack

BFS vs. DFS Traversal

- Implement \{ Discovered \} as Queue
- First in, first out
- Traverse nodes breadth first
- Implement \{ Discovered \} as Stack
- First in, last out
- Traverse nodes depth first

Recursive Traversal Algorithm

Traverse()

for all nodes X

set X.tag = False

Visit ($1^{\text {st }}$ node)
Visit (X)
set X.tag = True
for each successor Y of X

$$
\begin{gathered}
\text { if (Y.tag = False) } \\
\text { Visit (Y) }
\end{gathered}
$$

Recursive Graph Traversal

E Can traverse graph using recursive algorithm

- Recursively visit successors
- Implicit call stack \& backtracking
- Results in depth-first traversal

