CMSC 132:
Object-Oriented Programming i

Graphs & Graph Traversal

Department of Computer Science
University of Maryland, College Park

Graph Data Structures

¥ Many-to-many relationship between elements
E Each element has multiple predecessors
E Each element has multiple successors

_______ many
< SUCCESSOrs

many -----------sm
predecessors

Graph Definitions

F Node
E Element of graph @
B State

u | ist of adjacent/neighbor/successor nodes

F Edge
B Connection between two nodes @ @

B State
= Endpoints of edge

Graph Definitions

¥ Directed graph
¥ Directed edges

¥ Undirected graph
E Undirected edges

AS—2=B

A_

B

G
N\

(a) Directed graph

(b) Undirected graph

Graph Definitions

F Weighted graph

E Weight (cost) associated with each edge

Graph Definitions

¥ Path

E Sequence of nodes n;, n,, ... n,

E Edge exists between each pair of nodes n,, n,,

E Example
HA, B, Cis apath
®A E, Dis not apath

Graph Definitions

¥ Cycle
E Path that ends back at starting node
E Example

BA E A
EAB,C,D,EA
¥ Simple path
E No cycles in path
¥ Acyclic graph
B No cycles In graph

Graph Definitions

¥ Reachable
B Path exists between nodes

F Connected graph
E Every node is reachable from some node in graph

N

Unconnected graphs

Graph Operations

¥ Traversal (search)
E Visit each node in graph exactly once
B Usually perform computation at each node
E Two approaches
® Breadth first search (BFS)

® Depth first search (DFS)

Breadth-first Search (BES)

Approach

Example traversal

I A

Visit all neighbors of
hode first

View as series of
expanding circles

Keep list of hodes to
visit in queue

n
a, cb
e, g, hij

10

Breadth-first Tree Traversal

¥ Example traversals starting from 1

Left to right Right to left Random

11

Traversals Orders

¥ Order of successors
E For tree
® Can order children nodes from left to right
E For graph
u | eft to right doesn’t make much sense
® Each node just has a set of successors and
predecessors; there is no order among edges

¥ For breadth first search
B Visit all nodes at distance k from starting point

B Before visiting any nodes at (minimum) distance k+1
from starting point

12

Depth-first Search (DES)

F Approach
E Visit all nodes on path first
B Backtrack when path ends

E Keep list of nodes to visit
In a stack

E Example traversal Os
N
A

C
B,C,D,.. ?
F...

PO NPR

13

Depth-first Tree Traversal

¥ Example traversals from 1 (preorder)

Left to right Right to left Random

14

Traversal Algorithms

F |ssue
E How to avoid revisiting nodes g
E Infinite loop if cycles present

¥ Approaches g 9

B Record set of visited nodes

E Mark nodes as visited 0 e 9

15

Traversal — Avoid Revisiting Nodes

¥ Record set of visited nodes
E Initialize { Visited } to empty set
B Add to { Visited } as nodes is visited
B Skip nodes already in { Visited }

) -0 G- G

V=0 V={1} V={1,2}

16

Traversal — Avoid Revisiting Nodes

¥ Mark nodes as visited
¥ Initialize tag on all nodes (to False)
B Set tag (to True) as node is visited
E Skip nodes with tag = True

B ®-060 -0 E

17

General Traversal Algorithm

{ Visited } = [
{ Discovered } = { 1st node }

while ({ Discovered } # [)
take node X out of { Discovered }
If X not in { Visited }
add X to { Visited }
for each successor Y of X
If (Y is notin { Visited })
add Y to { Discovered }

18

Traversal Algorithm Using Tags

for all nodes X
set X.tag = False

{ Discovered } = { 1st node }

while ({ Discovered } # [)
take node X out of { Discovered }
If (X.tag = False)
set X.tag = True
for each successor Y of X
if (Y.tag = False)
add Y to { Discovered }

19

Traversal Algorithm with Queue

for all nodes X
X.tag = False

put 1 node in Queue
while (Queue not empty)

take node X out of Queue
If (X.tag = False)
set X.tag = True
for each successor Y of X
If (Y.tag = False)
put Y in Queue

20

Traversal Algorithm with Stack

for all nodes X
X.tag = False

put 1* node in Stack
while (Stack not empty)

pop X off Stack
If (X.tag = False)
set X.tag = True
for each successor Y of X
If (Y.tag = False)
push Y onto Stack

21

BFS vs. DES Traversal

¥ Implement { Discovered } as Queue
E First In, first out
E Traverse nodes breadth first

F Implement { Discovered } as Stack
E First in, last out
E Traverse nodes depth first

22

Recursive Traversal Algorithm

Traverse()
for all nodes X
set X.tag = False

Visit (1* node)
Visit (X))
set X.tag = True
for each successor Y of X
iIf (Y.tag = False)
Visit (Y)

23

Recursive Graph Traversal

E Can traverse graph using recursive algorithm
B Recursively visit successors

E Implicit call stack & backtracking
E Results in depth-first traversal

24

	CMSC 132: Object-Oriented Programming II
	Graph Data Structures
	Graph Definitions
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Graph Operations
	Breadth-first Search (BFS)
	Breadth-first Tree Traversal
	Traversals Orders
	Depth-first Search (DFS)
	Depth-first Tree Traversal
	Traversal Algorithms
	Traversal – Avoid Revisiting Nodes
	Slide 17
	General Traversal Algorithm
	Traversal Algorithm Using Tags
	Traversal Algorithm with Queue
	Traversal Algorithm with Stack
	BFS vs. DFS Traversal
	Recursive Traversal Algorithm
	Recursive Graph Traversal

