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Graph Data Structures

Many-to-many relationship between elements
Each element has multiple predecessors

Each element has multiple successors
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Graph Definitions

Node
Element of graph

State

List of adjacent/neighbor/successor nodes

Edge
Connection between two nodes

State

Endpoints of edge

A



4

Graph Definitions

Directed graph
Directed edges

Undirected graph
Undirected edges
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Graph Definitions

Weighted graph
Weight (cost) associated with each edge
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Graph Definitions

Path 

Sequence of nodes n1, n2, … nk

Edge exists between each pair of nodes ni , ni+1

Example

A, B, C is a path

A, E, D is not a path
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Graph Definitions

Cycle
Path that ends back at starting node

Example

A, E, A

A, B, C, D, E, A

Simple path
No cycles in path

Acyclic graph
No cycles in graph
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Graph Definitions

Reachable
Path exists between nodes

Connected graph
Every node is reachable from some node in graph

Unconnected graphs



9

Graph Operations

Traversal (search)
Visit each node in graph exactly once

Usually perform computation at each node

Two approaches

Breadth first search (BFS)

Depth first search (DFS)
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Breadth-first Search (BFS)

Approach
Visit all neighbors of 
node first

View as series of 
expanding circles

Keep list of nodes to 
visit in queue

Example traversal
1. n

2. a, c, b

3. e, g, h, i, j

4. d, f
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Breadth-first Tree Traversal

Example traversals starting from 1

1

2 3

4 5 6

7

1

3 2

6 5 4

7

1

2 3

5 6 4

7

Left to right Right to left Random
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Traversals Orders

Order of successors 
For tree

Can order children nodes from left to right 

For graph

Left to right doesn’t make much sense

Each node just has a set of successors and 
predecessors; there is no order among edges

For breadth first search
Visit all nodes at distance k from starting point

Before visiting any nodes at (minimum) distance k+1 
from starting point
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Depth-first Search (DFS)

Approach
Visit all nodes on path first

Backtrack when path ends

Keep list of nodes to visit 
in a stack

Example traversal
1. N

2. A

3. B, C, D, …

4. F…
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Depth-first Tree Traversal

Example traversals from 1 (preorder)

1

2 6

3 5 7

4

1

4 2

6 5 3

7

1

2 6

4 3 7

5

Left to right Right to left Random
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Traversal Algorithms

Issue
How to avoid revisiting nodes

Infinite loop if cycles present

Approaches
Record set of visited nodes

Mark nodes as visited

1

2 3

4 ? 5

?
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Traversal – Avoid Revisiting Nodes

Record set of visited nodes
Initialize { Visited } to empty set

Add to { Visited } as nodes is visited

Skip nodes already in { Visited }

1

2 3

4

V = ∅

1

2 3

4

V = { 1 }

1

2 3

4

V = { 1, 2 }
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Traversal – Avoid Revisiting Nodes

Mark nodes as visited
Initialize tag on all nodes (to False)

Set tag (to True) as node is visited

Skip nodes with tag = True

F

F F

F

T

F F

F

T

T F

F
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General Traversal Algorithm

{ Visited } = ∅ 

{ Discovered } = { 1st node }

while ( { Discovered } ≠ ∅ )

take node X out of { Discovered }

if X not in { Visited }

add X to { Visited } 

for each successor Y of X

if ( Y is not in { Visited } )
add Y to { Discovered }    
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Traversal Algorithm Using Tags

for all nodes X
set X.tag = False 

{ Discovered } = { 1st node }

while ( { Discovered } ≠ ∅ )

take node X out of { Discovered }

if (X.tag = False)
set X.tag = True 

for each successor Y of X

if (Y.tag = False)

add Y to { Discovered }
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Traversal Algorithm with Queue

for all nodes X
X.tag = False 

put 1st node in Queue
while ( Queue not empty ) 

take node X out of Queue

if (X.tag = False)
set X.tag = True

for each successor Y of X

if (Y.tag = False)
put Y in Queue    
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Traversal Algorithm with Stack

for all nodes X
X.tag = False 

put 1st node in Stack
while (Stack not empty ) 

pop X off Stack

if (X.tag = False)
set X.tag = True

for each successor Y of X

if (Y.tag = False)

push Y onto Stack
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BFS vs. DFS Traversal

Implement { Discovered } as Queue 
First in, first out

Traverse nodes breadth first 

Implement { Discovered } as Stack 
First in, last out

Traverse nodes depth first 
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Recursive Traversal Algorithm

Traverse( ) 
for all nodes X

set X.tag = False 

Visit ( 1st node )

Visit ( X )

set X.tag = True

for each successor Y of X

if (Y.tag = False)
Visit ( Y )    
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Recursive Graph Traversal

Can traverse graph using recursive algorithm
Recursively visit successors

Implicit call stack & backtracking
Results in depth-first traversal
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