
1

CMSC 132:
Object-Oriented Programming II

Design Patterns I

Department of Computer Science

University of Maryland, College Park

2

Design Patterns

Descriptions of reusable solutions to common software design problems

Captures the experience of experts

Rationale for design

Tradeoffs

Codifies design in reusable form

Example

Iterator pattern

3

Goals

Solve common programming challenges

Improve reliability of solution

Aid rapid software development

Useful for real-world applications

4

Observations

Design patterns are like recipes – generic solutions to expected situations

Design patterns are language independent

Recognizing when and where to use design patterns requires familiarity & experience

Design pattern libraries serve as a glossary of idioms for understanding common, but complex
solutions

5

Observations (cont.)

Many design patterns may need to fit together

Design Patterns (by Gamma et al. 1995, a.k.a. Gang of Four, or GOF) list 23 design
patterns

Around 250 common OO design patterns

Design patterns are used throughout the Java Class Libraries

6

Documentation Format
1. Motivation or context for pattern

2. Prerequisites for using a pattern

3. Description of program structure

4. List of participants (classes & objects)

5. Collaborations (interactions) between participants

6. Consequences of using pattern (good & bad)

7. Implementation techniques & issues

8. Example codes

9. Known uses

10. Related patterns

7

Types of Design Patterns

Creational

Deal with the best way to create objects

Structural

Ways to bring together groups of objects

Behavioral

Ways for objects to communicate & interact

8

Creational Patterns

1. Abstract Factory- Creates an instance of several
families of classes

2. Builder - Separates object construction from its
representation

3. Factory Method - Creates an instance of several
derived classes

4. Prototype - A fully initialized instance to be copied or
cloned

5. Singleton - A class of which only a single instance can
exist

9

Structural Patterns

6. Adapter - Match interfaces of different classes

7. Bridge - Separates an object’s interface from its
implementation

8. Composite - A tree structure of simple and composite
objects

9. Decorator - Add responsibilities to objects
dynamically

10. Façade - Single class that represents an entire
subsystem

11. Flyweight - Fine-grained instance used for efficient
sharing

12. Proxy - Object representing another object

10

Behavioral Patterns

13. Chain of Responsibility - A way of passing a request
between a chain of objects

14. Command - Encapsulate a command request as an
object

15. Interpreter - A way to include language elements in a
program

16. Iterator - Sequentially access the elements of a
collection

17. Mediator - Defines simplified communication between
classes

18. Memento - Capture and restore an object's internal
state

11

Behavioral Patterns (cont.)

19. Observer - A way of notifying change to a number of
classes

20. State - Alter an object's behavior when its state
changes

21. Strategy - Encapsulates an algorithm inside a class

22. Template Method - Defer the exact steps of an
algorithm to a subclass

23. Visitor - Defines a new operation to a class without
changing class

12

Iterator Pattern

Definition

Move through collection of objects without knowing its internal representation

Where to use & benefits

Use a standard interface to represent data objects

Uses standard iterator built in each standard collection, like List, Sort, or Map

Need to distinguish variations in the traversal of an aggregate

13

Iterator Pattern

Example

Iterator for collection

Original

Examine elements of collection directly
Using pattern

Collection provides Iterator class for examining
elements in collection

14

Iterator Example
public interface Iterator<V> {
 bool hasNext();
 V next();
 void remove();
}

Iterator<V> it = myCollection.iterator();

while (it.hasNext()) {
 V x = it.next(); // finds all objects
 … // in collection
}

15

Singleton Pattern

Definition

One instance of a class or value accessible globally

Where to use & benefits

Ensure unique instance by defining class final

Access to the instance only via methods provided

16

Singleton Example
public class Employee {
 public static final int ID = 1234; // ID is a singleton
}
public final class MySingleton {

// declare the unique instance of the class
private static MySingleton uniq = new MySingleton();
// private constructor only accessed from this class
private MySingleton() { … }
// return reference to unique instance of class
public static MySingleton getInstance() {
 return uniq;
}

}

17

Adapter Pattern

Definition

Convert existing interfaces to new interface

Where to use & benefits

Help match an interface

Make unrelated classes work together

Increase transparency of classes

18

Adapter Pattern

Example

Adapter from integer Set to integer Priority Queue

Original

Integer set does not support Priority Queue
Using pattern

Adapter provides interface for using Set as
Priority Queue

Add needed functionality in Adapter methods

19

Adapter Example
public interface PriorityQueue { // Priority Queue
 void add(Object o);
 int size();
 Object removeSmallest();
}

20

Adapter Example
public class PriorityQueueAdapter implements PriorityQueue {
 Set s;
 PriorityQueueAdapter(Set s) { this.s = s; }
 public void add(Object o) { s.add(o); }
 int size() { return s.size(); }
 public Integer removeSmallest() {
 Integer smallest = Integer.MAX_VALUE;

 for (Integer i : s) {
if (i.compareTo(smallest) < 0)

 smallest = i;
 }
 s.remove(smallest);
 return smallest;
 }
}

21

Factory Pattern

Definition

Provides an abstraction for deciding which class should be instantiated based on
parameters given

Where to use & benefits

A class cannot anticipate which subclasses must be created

Separate a family of objects using shared interface

Hide concrete classes from the client

22

Factory Pattern

Example

Car Factory produces different Car objects

Original

Different classes implement Car interface

Directly instantiate car objects

Need to modify client to change cars
Using pattern

Use carFactory class to produce car objects

Can change cars by changing carFactory

23

Factory Example
class Ferrari implements Car; // fast car
class Bentley implements Car; // antique car
class Explorer implements Car; // family SUV
Car fast = new Ferrari(); // returns fast car

public class carFactory {
 public static Car create(String type) {
 if (type.equals("fast")) return new Ferrari();
 if (type.equals(“antique")) return new Bentley();
 else if (type.equals(“family”) return new Explorer();
} }

Car fast = carFactory.create("fast"); // returns fast car

24

Decorator Pattern

Definition

Attach additional responsibilities or functions to an object dynamically or statically

Where to use & benefits

Provide flexible alternative to subclassing

Add new function to an object without affecting other objects

Make responsibilities easily added and removed dynamically & transparently to the object

25

Decorator Pattern

Example

Pizza Decorator adds toppings to Pizza

Original

Pizza subclasses

Combinatorial explosion in # of subclasses
Using pattern

Pizza decorator classes add toppings to Pizza
objects dynamically

Can create different combinations of toppings
without modifying Pizza class

26

Decorator Example

public interface Pizza {
 int cost();
}
public class SmallPizza implements Pizza {
 int cost(){ return 8; }
}
public class LargePizza implements Pizza {
 int cost(){ return 12; }
}

public class PizzaDecorator implements Pizza {

private Pizza p;

public PizzaDecorator(Pizza p) {this.p = p;}

public int cost() { return p.cost(); }

}

27

Decorator Example
public class WithOlive extends PizzaDecorator {

public WithOlive(Pizza p) { super(p); }

public int cost() { return super.cost() +2; }

}

public class WithTomato extends PizzaDecorator {

public WithTomato(Pizza p) { super(p); }

public int cost() {return super.cost() + 3;}

}

// Driver

Pizza tomatoOlivePizza = new WithTomato(new WithOlive(new LargePizza()));

System.out.println(tomatoOlivePizza.cost()); // returns 12 + 2 + 3

Pizza doubleTomatoPizza = new WithTomato(new WithTomato(new SmallPizza()));

System.out.println(doubleTomatoPizza.cost()); // returns 8 + 3 + 3

28

Decorator Pattern

Examples from Java I/O

Interface

InputStream
Concrete subclasses

FileInputStream, ByteArrayInputStream
Decorators

BufferedInputStream, DataInputStream
Code

InputStream s = new DataInputStream(new
BufferedInputStream (new FileInputStream()));

	CMSC 132: Object-Oriented Programming II
	Design Patterns
	Goals
	Observations
	Observations (cont.)
	Documentation Format
	Types of Design Patterns
	Creational Patterns
	Structural Patterns
	Behavioral Patterns
	Behavioral Patterns (cont.)
	Iterator Pattern
	Slide 13
	Iterator Example
	Singleton Pattern
	Singleton Example
	Adapter Pattern
	Slide 18
	Adapter Example
	Slide 20
	Factory Pattern
	Slide 22
	Factory Example
	Decorator Pattern
	Slide 25
	Decorator Example
	Slide 27
	Slide 28

