CMSC 132
Object-Oriented Programming Il

St Java Inner Classes
@4EL§> Department of Computer Science

University of Maryland, College Park

Java Classes

E Top level classes

B Declared inside package
E Visible throughout package, perhaps further
E Normally declared in their own file
m Public classes must be defined in their own file

m Not required for other classes

P Inner and nested classes

B Declared inside class (or method)
E Normally used only in outer (enclosing) class
m Can have wider visibility

Inner / Nested Classes

P Inner class
P Nested class

public class MyOuterClass {

public class MylnnerClass { ...

}

static public class MyNestedClass { ...

}

}
}

Inner Classes

B Description

B Class defined in scope of another class
E May be named or anonymous

F Useful property

E QOuter & inner class can directly access each
other’s fields & methods (even if private)

Inner Class Link To Outer Class

P Inner class instance

B Has association to an instance of outer class
E Must be instantiated with an enclosing instance

B Is tied to outer class object at moment of creation
(can not be changed)

[MyList | [MyList |

PN X

[Mylterator] [Mylterator] [Mylterator]

Syntax

Class Outer {
class Inner {

}

Inner X = new Inner();

Outer out = new Outer();
Outer.Inner in = out.new Out.Inner();

Using Inner Class Inside Outer Class

E Code

public class OC { // outer class
private int x = 2;
private class IC{ //inner class
private inty = 4,
private int getSum() { return x +vy; }

}

void bar() {
IC z=new IC(); /lcreate new IC assoc. w/ this
z.getsum(); /[treat z like normal object

}

Inner Classes

¥ Example

public class OuterClass {
private int x;
private class InnerClass {
private int y;
void foo(){x=1,;} /[access private field
}
void bar() {
InnerClass ic = new InnerClass();
IC.y = 2; /[access private field

}
}

Inner Classes

B Useful for
E Private helper classes
m Logical grouping of functionality
m Data hiding

E Linkage to outer class
mInner class object tied to outer class object

F Examples

B |terator for Java Collections
B ActionListener for Java GUI widgets

lterator Example

F MyList
public class MyList {
private Object [] a;
private int size;

}

E Want to make MyList implement Iterable

E Skipping generic types at the moment
E Need to be able to return an lterator

10

lterable Interface

Iterable interface defines the method
lterator<T> iterator()

Part of java.lang

Returns an iterator over a set of elements of

type T

Implementing this interface allows an object to

be the target of the enhanced for loop "foreach"

statement

EXAMPLE: SequentialintegerList

11

(Problematic) Mylterator Design

public class Mylterator implements Iterator {

private MyList list;

private int pos;

Mylterator(MyList list) {
this.list = list;
pos = 0;

}

public boolean hasNext() {
return pos < list.size;

}

public Object next() {
return list.a[pos++];

}

12

Mylterator Design

F Problems
E Need to maintain reference to MyList
E Need to access private data in MyList
E Solution

E Define Mylterator as inner class for MyList
m Instance of Mylterator tied to instance of MyList

m Mylterator methods can access private MyList
fields

B Mylterator objects can iterate through elements of
MyList

13

Successful) Mylterator Design

E Code

public class MyList implements Iterable {

private Object [] a;

private int size;

public Iterator iterator() {
return new Mylterator();

}

public class Mylterator implements lterator {
private int pos = 0;
public boolean hasNext() { return pos < size; }
public Object next() { return a[pos++]; }

}
}

E Notice that class implements lterable

14

Instantiating Inner Class

P How to access instance of inner class?

E Common gimmick

B QOuter class method returns instance of inner class
B Used by Java Collections Library for Iterators

¥ Example code

public class MyList {
public class IC implements lterator { ... }
public Iterator iterator() {
return new IC(); // creates instance of IC

]
}
MyList m = new MyList();
lterator it = m.iterator();

15

Accessing Outer Scope

¥ Code
public class OC { /[outer class
Int X = 2;
private class IC { /l inner class
Int X = 6;
private void getX() { // inner class method
Int X = 8;
System.out.println(x); // prints 8
System.out.printin(this.x); Il prints 6
System.out.println(OC.this.x); /l prints 2
}
}

}

16

Method Invocations

F Method invocations on inner class
B Can be transparently redirected to outer instance

P Resolving method call on unspecified object

1. See if method can be resolved on inner object

2. If not, see if method can be resolved on
corresponding instance of outer object

3. If nested multiple levels, keep on looking

17

Anonymous Inner Class

B Description

E Inner class without name
B Defined where you create an instance of it
mIn the middle of a method

m Returns an instance of anonymous inner class

B Useful if the only thing you want to do with an inner
class is create instances of it in one location

E Syntax

new ReturnType() { /[unnamed inner class
body of class... // implementing ReturnType

'

18

Anonymous Inner Class

E Code

public class MyList {
public Iterator iterator() {
return new lterator(){ //unnamed inner class
[l implementing lterator

'
}
}
MyList m = new MyList();
lterator it = m.iterator();

19

Example Anonymous Inner Classes

P Use

new Foo() {
public int one() { return 1; }
public int add(int x, inty) {return x +vy; }

F To define an anonymous inner class that

B Extends class Foo / implements interface Foo
B Defines methods one & add

20

MyList With Explicit Inner Class

E Code

public class MyList implements Iterable {

private Object [] a;

private int size;

public Iterator iterator() {
return new Mylterator();

}

public class Mylterator implements Iterator {
private int pos = 0O;
public boolean hasNext() { return pos < size; }
public Object next() { return a[pos++]; }

}
}

21

MyList With Anonymous Inner Class

E Code

public class MyList implements lterable {
private Object [] a;
private int size;
public Iterator iterator() {
return new lterator () {
private int pos = 0;
public boolean hasNext() { return pos < size; }
public Object next() { return a[pos++]; }

b
}

22

Support For Java GUIs

B Graphical User Interface (GUI)
B Java AWT & Swing libraries
F Event-driven programming model

B Components may generate events
mE.g., ActionEvent, KeyEvent, MouseEvent

E Requires event listeners to handle event
E Event listeners frequently implemented using
anonymous classes

E Used only in one location
E Implements event listener interfaces

23

Using Inner Classes Iin GUIS

javax.swing.SwingUtilities.invokelLater(new Runnable() {
public void run() {
createAndDisplayGUI();

}
1)

button.addActionListener (new ActionListener() {
public void actionPerformed (ActionEvent evt) {
System.out.printin(“Button pushed”);

1)

24

Nested Class

B Description

B Similar to inner class, but declared as static class
E No link to an instance of the outer class

B Can only access static fields & methods of the outer
class

B Useful if inner class object
m Associated with different outer class objects

m Survives longer than outer class object

¥ Example

class LinkedList {
static class Node { Node next; }
Node head;

25

Summary of Inner / Nested Classes

All iInner / nested classes

E Defined inside another class
B Can access private members of enclosing class

Inner class

B Each instance of an inner class is transparently
associated with an instance of the outer class

Anonymous inner class
E Unnamed inner class defined & used in one place

Nested class
B Defined as static class

26

