
1

CMSC 132:
Object-Oriented Programming II

Graph Implementation
Department of Computer Science

University of Maryland, College Park

2

Graph Implementation

How do we represent edges?
Adjacency matrix

2D array of neighbors

Adjacency list

List of neighbors

Adjacency set / map

Set / map of neighbors

Important for very large graphs
Affects efficiency / storage

3

Adjacency Matrix

Representation
2D array

Position j, k ⇒ edge between nodes nj, nk

Example

4

Adjacency Matrix

Representation (cont.)
Single array for entire graph

Undirected graph

Only upper / lower triangle matrix needed

Since nj, nk implies nk, nj

Unweighted graph

Matrix elements ⇒ boolean

Weighted graph

Matrix elements ⇒ weight

5

Adjacency List/Set

Representation
For each node, store

List/Set of neighbors / successors
Linked list

Array list

For weighted graph

Also store weight for each edge

Using a Map is a good choice

For undirected graph with edge (a↔b)

Nodes a & b need to store each other as neighbor

For directed graph with edge (a→b)

Node a needs to store node b as neighbor

6

Adjacency List

Example
Unweighted graph

Weighted graph

node 1: {2, 3}
node 2: {1, 3, 4}
node 3: {1, 2, 4, 5}
node 4: {2, 3, 5}
node 5: {3, 4, 5}

node 1: {2=3.7, 3=5}
node 2: {1=3.7, 3=1, 4=10.2}
node 3: {1=5, 2=1, 4=8, 5=3}
node 4: {2=10.2, 3=8, 5=1.5}
node 5: {3=3, 4=1.5, 5=6}

7

Adjacency Set / Map

Representation
For each node, store

Set or map of neighbors / successors

For unweighted graph

Use set of neighbors

For weighted graph

Use map of neighbors, w/ value = weight of edge

For undirected graph with edge (a↔b)

Nodes a & b need to store each other as neighbor

For directed graph with edge (a→b)

Node a needs to store node b as neighbor

8

Graph Space Requirements

Adjacency matrix

½ N2 entries (for graph with N nodes, E edges)

Many empty entries for large, sparse graphs

Adjacency list
2×E entries

Adjacency set / map
2×E entries

Space overhead per entry

Higher than for adjacency list

9

Graph Time Requirements

Adjacency matrix
Can find individual edge (a,b) quickly

Examine entry in array Edge[a,b]

Constant time operation

Adjacency list / set / map
Can find all edges for node (a) quickly

Iterate through collection of edges for a

On average E / N edges per node

10

Graph Time Requirements

Average Complexity of operations
For graph with N nodes, E edges

Operation Adj Matrix Adj List Adj Set/Map

Find edge O(1) O(E/N) O(1)

Insert edge O(1) O(E/N) O(1)

Delete edge O(1) O(E/N) O(1)

Enumerate
edges for node

O(N) O(E/N) O(E/N)

11

Choosing Graph Implementations

Graph density
Ratio edges to nodes (dense vs. sparse)

Graph algorithm
Neighbor based

For each node X in graph

For each neighbor Y of X // adj list faster if sparse

 doWork()

Connection based
For each node X in …

For each node Y in …

 if (X,Y) is an edge // adj matrix faster if dense

 doWork()

	CMSC 132: Object-Oriented Programming II
	Graph Implementation
	Adjacency Matrix
	Slide 4
	Adjacency List/Set
	Adjacency List
	Adjacency Set / Map
	Graph Space Requirements
	Graph Time Requirements
	Slide 10
	Choosing Graph Implementations

