
CMSC 132:

Object-Oriented Programming II

Linear Data Structures

Department of Computer Science

University of Maryland, College Park

Overview

Linear data structures

General properties

Implementations

Array

Linked list

Restricted abstractions

Stack

Queue

Linear Data Structures

1-to-1 relationship between elements

Each element has unique predecessor & successor

Results in total ordering over elements

For any two distinct elements x and y, either x

comes before y or y comes before x

Linear Data Structures

Terminology

Head (first element in list)  no predecessor

Tail (last element in list)  no successor

Operations

Add element

Remove element

Find element

Add & Remove Elements

Add an element

Where?

At head (front) of list

At tail (end) of list

After a particular element

Remove an element

Remove first element

Remove last element

Remove a particular element (e.g., String “Happy”)

What if “Happy” occurs more than once in list?

Accessing Elements

How do you find an element?

At head (front) of list

At tail (end) of list

By position

Example: the 5th element

By iterating through the list, and

using relative position

Next element (successor)

Previous element (predecessor)

List Implementations

Two basic implementation techniques for lists

Store elements in an array (“Sequential Allocation”)

Store as a linked list (“Linked Allocation”)

Place each element in a separate object (node)

Node contains reference to other node(s)

Link nodes together

Linked List

Properties

Elements in linked list are ordered

Element has successor

State of List

Head

Tail

Cursor (current position)

Head

Tail

Cursor

Array Implementations

Advantages

Can efficiently access element at any position

Efficient use of space

Space to hold reference to each element

Disadvantages

Expensive to grow / shrink array

Can amortize cost (grow / shrink in spurts)

Expensive to insert / remove elements in middle

Linked Implementation

Advantages

Can efficiently insert / remove elements anywhere

Disadvantages

Cannot efficiently access element at any position

Need to traverse list to find element

Less efficient use of space

1-2 additional references per element

Efficiency of Operations

Array

Insertion / deletion = O(n)

Indexing = O(1)

Linked list

Insertion / deletion = O(1)

Indexing = O(n)

Linked List Example

Coding Example of LinkedList

Doubly Linked List

Linked list where
Element has predecessor & successor

Issues
Easy to find preceding / succeeding elements

Extra work to maintain links (for insert / delete)

More storage per node

Node Structures for Linked Lists

Linked list

Class Node {

Object data;

Node next;

}

Doubly linked list

Class Node {

Object data;

Node next;

Node previous;

}

Doubly Linked List – Insertion

Example

Must update references in both predecessor

and successor nodes

Stack

Properties

Elements removed in opposite order of insertion

Last-in, First-out (LIFO)

A restricted list where

Access only to elements at one end

Can add / remove elements only at one end

Stack

Stack operations

Push = add element (to top)

Pop = remove element (from top)

Example

Stack Implementations

Linked list

Add / remove from head of list

Array

Increment / decrement Top pointer after push / pop

X Y Z …
Top

Queue

Properties

Elements removed in order of insertion

First-in, First-out (FIFO)

A restricted list where

Access only to elements at beginning / end of list

Add elements only to end of list

Remove elements only from front of list

Alternatively, can add to front & remove from end

Queue

Queue operations

Enqueue = add element (to back)

Dequeue = remove element (from front)

Example

Queue Applications

Examples

Songs to be played

Jobs to be printed

Customers to be served

Citizens to cast votes

South Africa, 2004

Queue Implementations

Linked list

Add to tail (back) of list

Remove from head (front) of list

Array

Circular array

Queue – Array

Store queue as elements in array

Problem

Queue contents move (“inchworm effect”)

As result, can not add to back of queue, even

though queue is not full

Queue – Circular Array

Circular array (ring)

q[0] follows q[MAX – 1]

Index using q[i % MAX]

Problem

Detecting difference

between empty and

nonempty queue

