CMSC 132
Object-Oriented Programming Il

Sty Linear Data Structures
@4EL§> Department of Computer Science

University of Maryland, College Park

Overview

E Linear data structures
B General properties
F Implementations

B Array
E Linked list

I Restricted abstractions

E Stack
B Queue

Linear Data Structures

F 1-to-1relationship between elements

B Each element has unique predecessor & successor
B Results in total ordering over elements

E For any two distinct elements x and y, either x
comes beforey or y comes before x

first last
‘\\ ”l’ ‘\\~ "ﬁ ;
unique unique
predecessor successor

Linear Data Structures

E Terminology

B Head (first element in list) = no predecessor
E Tail (last element in list) = no successor

F Operations

B Add element
E Remove element
E Find element

Add & Remove Elements

F Add an element

E Where?
m At head (front) of list

m At tail (end) of list
m After a particular element

P Remove an element

E Remove first element

E Remove last element

E Remove a particular element (e.g., String “Happy”’)
m What if “Happy” occurs more than once in list?

Accessing Elements

¥ How do you find an element?
E At head (front) of list ¥
B At tail (end) of list (.
E By position
m Example: the 5th element ——

BRUCE WILLIS

s Ty

(=2 B R =
- - 4 -
Ly
i

~iEgss

Y
&
2

E By iterating through the list, and
using relative position

m Next element (successor)

‘
1)

e, e 'q. ! 3 h 4
o ”.
. v_.'
¥
R

m Previous element (predecessor)

List Implementations

E Two basic implementation techniques for lists
E Store elements in an array (“Sequential Allocation”)

[T T T T T 11

E Store as a linked list (“Linked Allocation”)
m Place each element in a separate object (node)

m Node contains reference to other node(s)
mLink nodes together

—O—CO—-O—-O

Linked List

F Properties

B Elements in linked list are ordered
B Element has successor

B State of List

E Head
E Tail Cursor
B Cursor (current position) l

Array Implementations

¥ Advantages

E Can efficiently access element at any position
B Efficient use of space
m Space to hold reference to each element

F Disadvantages

E Expensive to grow / shrink array
m Can amortize cost (grow / shrink in spurts)

E Expensive to insert / remove elements in middle

Linked Implementation

¥ Advantages
B Can efficiently insert / remove elements anywhere

F Disadvantages
E Cannot efficiently access element at any position
m Need to traverse list to find element

E Less efficient use of space
m 1-2 additional references per element

Efficiency of Operations

E Array

E Insertion / deletion = O(n)
E Indexing = O(1)

E Linked list

E Insertion / deletion = O(1)
E Indexing = O(n)

Linked List Example
¥ Coding Example of LinkedList

Doubly Linked List

F Linked list where
E Element has predecessor & successor

previous next

A ——> > e —> A
€ ———— <
\ /
head tail count: N

E ISsues

B Easy to find preceding / succeeding elements
B Extra work to maintain links (for insert / delete)
E More storage per node

Node Structures for Linked Lists

F Linked list
Class Node {

Object data,; 1h] 72| T T

Node next;
}
E Doubly linked list
Class Node {

previous next

Object data; - 2 or

A
Node next: —— e

Node previous;

}

Doubly Linked List — Insertion

¥ Example

newhNode newNode
| I ; I
N W
2L A el R A L R
node node.next naode

F Must update references in both predecessor
and successor nodes

Stack

F Properties

E Elements removed in opposite order of insertion
B Last-in, First-out (LIFO)

E A restricted list where

B Access only to elements at one end
B Can add / remove elements only at one end

Stack

F Stack operations
B Push =add element (to top)

E Pop =remove element (from top)
¥ Example
top - Z top > W
Y top > Y Y
X X X

(a) A three-element stack (b) After a pop () operation (c) After apush (W) operation

Stack Implementations

E Linked list
B Add /remove from head of list

top > Z head > Z 5> Y -5 X
Y
X
(a) Logical view of the stack (b) Its linked list implementation
E Array

E Increment / decrement Top pointer after push / pop

/N\To

X1Y|Z

P

Queue

F Properties

B Elements removed in order of insertion
E First-in, First-out (FIFO)

E A restricted list where

B Access only to elements at beginning / end of list
m Add elements only to end of list

m Remove elements only from front of list
B Alternatively, can add to front & remove from end

Queue

F Queue operations

E Enqueue = add element (to back)
E Dequeue =remove element (from front)
¥ Example
X Y Z Y Z Y Z W
FAN A A N A A
front back front back front back

(a) Three-element queue (b) After deletion of X (c) After insertion of W

Queue Applications

¥ Examples

E Songs to be played

E Jobs to be printed

E Customers to be served

E Citizens to cast votes
South Africa, 2004 —

Queue Implementations

E Linked list

B Add to tail (back) of list
E Remove from head (front) of list

front=>5—->17 =521 =5 9

back T

E Array
E Circular array

B Store queue as elements in array

E Problem

Queue — Array

E Queue contents move (“inchworm effect”)

A B C

(A A

front back

C D E __

M A

front back

B E

4
front

F

M

back

(a)

(b)

()

E As result, can not add to back of queue, even

though queue is not full

Queue — Circular Array

E Circular array (ring)

B g[O] follows g MAX -1

E Index using q[| % MAX]

&@Pj‘ = 9/0)

E Problem

B Detecting difference
between empty and
nonempty queue

W

b

& O\

