
CMSC 132:

Object-Oriented Programming II

Java Support for OOP

Department of Computer Science

University of Maryland, College Park

“this” Reference

Description

Reserved keyword

Refers to object through which method was invoked

Allows object to refer to itself

Use to refer to instance variables of object

“this” Reference – Example

 class Node {

 value val1;

 value val2;

 void foo(value val2) {

 … = val1; // same as this.val1 (implicit this)

 … = val2; // parameter to method

 … = this.val2; // instance variable for object

 bar(this); // passes reference to object

 }

}

Also used in constructors to invoke another

constructor in the same class.

Inheritance

Definition

Relationship between classes when state and

behavior of one class is a subset of another class

Terminology

Superclass / parent More general class

Subclass More specialized class

Forms a class hierarchy

Helps promote code reuse

“super” Reference

Description

Reserved keyword

Refers to superclass

Allows object to refer to methods / variables in

superclass

Examples

super.x // accesses variable x in superclass

super() // invokes constructor in superclass

super.foo() // invokes method foo() in superclass

References & Aliases

Reference

A way to get to an object, not the object itself

All variables in Java are references to objects

Alias

Multiple references to same object

“x == y“ operator tests for alias

x.equals(y) tests contents of object (potentially)

Object z

Reference x

Reference y

Implementing Equals

Approach we want to use (assuming class A)

public boolean equals(Object obj) {

 if (obj == this)

 return true;

 if (!(obj instanceof A))

 return false;

 A a = (A)obj;

 /* Specific comparison based on A fields appears here */

}

Example: See equalsMethod package

Constructor

Description

Method invoked when object is instantiated

Helps initialize object

Method with same name as class w/o return type

Default parameterless constructor

If no other constructor specified

Initializes all fields to 0 or null

Implicitly invokes constructor for superclass

If not explicitly included

Constructor – Example

 class Foo {

 Foo() { … } // constructor for Foo

 }

 class Bar extends Foo {

 Bar() { // constructor for Bar

 // implicitly invokes Foo() here

 …

 }

 }

 class Bar2 extends Foo {

 Bar2() { // constructor for bar

 super(); // explicitly invokes Foo() here

 }

 }

Three Levels of Copying Objects

Assume y refers to object z

y
z …

y

x

z

z'

…

y

x

z

z'

…

…

1. Reference copy

Makes copy of reference

x = y;

2. Shallow copy

Makes copy of object

x = y.clone();

3. Deep copy

Makes copy of object z

and all objects (directly or

indirectly) referred to by z

x

Cloning

Cloning

Creates identical copy of object using clone()

Cloneable interface

Supports clone() method

Returns copy of object

Object class version makes a shallow copy

Over-ride it if you implement Cloneable

EXAMPLE: Cloning

Initialization Block

Definition

Block of code used to initialize static & instance

variables for class

Motivation

Enable complex initializations for static variables

Control flow

Exceptions

Share code between multiple constructors for

same class

Initialization Block Types

Static initialization block

Code executed when class loaded

Initialization block

Code executed when each object created

 (at beginning of call to constructor)

Example

 class Foo {

 static { A = 1; } // static initialization block

 { A = 2; } // initialization block

 }

Variable Initialization

Variables may be initialized

At time of declaration

In initialization block

In constructor

Order of initialization

1. Declaration, initialization block

 (in the same order as in the class definition)

2. Constructor

EXAMPLE: Octopus.java

Garbage Collection

Concepts

All interactions with objects occur through

reference variables

If no reference to object exists, object becomes

garbage (useless, no longer affects program)

Garbage collection

Reclaiming memory used by unreferenced objects

Periodically performed by Java

Not guaranteed to occur

Only needed if running low on memory

Destructor

Description

Method with name finalize()

Returns void

Contains action performed when object is freed

Invoked automatically by garbage collector

Not invoked if garbage collection does not occur

Example

 class Foo {

 void finalize() { … } // destructor for foo

 }

Method Overloading

Description

Same name refers to multiple methods

Sources of overloading

Multiple methods with different parameters

Constructors frequently overloaded

Redefine method in subclass

Example

 class Foo {

 Foo() { … } // 1st constructor for Foo

 Foo(int n) { … } // 2nd constructor for Foo

 }

Package

Definition

Group related classes under one name

Helps manage software complexity

Separate namespace for each package

Package name added in front of actual name

 Put generic / utility classes in packages

Avoid code duplication

Example

package edu.umd.cs; // name of package

Package – Import

Import

Make classes from package available for use

Example

import java.util.Random; // import single class

import java.util.*; // all classes in package

… // class definitions

Alternatively, use fully qualified name

everywhere:

java.util.Random r = new java.util.Random();

Scope

Scope

Part of program where a variable may be referenced

Determined by location of variable declaration

Boundary usually demarcated by { }

Example

 public MyMethod1() {

 int myVar; myVar accessible in

 ... method between { }

 }

Scope – Example

Example

package edu.umd.cs ;

public class MyClass1 {

 public void MyMethod1() {

 ...

 }

 public void MyMethod2() {

 ...

 }

}

public class MyClass2 {

}

M
e
th

o
d

M

e
th

o
d

C
la

s
s

P
a
c
k
a
g

e

C
la

s
s

Scopes

Modifier

Description

Java keyword (added to definition)

Specifies characteristics of a language construct

(Partial) list of modifiers

Public / private / protected

Static

Final

Abstract

Modifier

Examples

public class Foo {

 private static int count;

 private final int increment = 5;

 protected void finalize { … }

}

public abstract class Bar {

 abstract int go() { … }

}

Visibility Modifier

Properties

Controls access to class members

Applied to instance variables & methods

Four types of access in Java

Public Most visible

Protected

Package

Default if no modifier specified

Private Least visible

Visibility Modifier – Where Visible

“public”

Referenced anywhere (i.e., outside package)

“protected”

Referenced within package, or by subclasses

outside package

None specified (package)

Referenced only within package

“private”

Referenced only within class definition

Applicable to class fields & methods

Visibility Modifier

For instance variables

Should usually be private to enforce encapsulation

Sometimes may be protected for subclass access

For methods

Public methods – provide services to clients

Private methods – provide support other methods

Protected methods – provide support for subclass

Visibility Modifier

Modifier – Static

Static variable

Single copy for class

Shared among all objects of class

Static method

Can be invoked through class name

Does not need to be invoked through object

Can be used even if no objects of class exist

Can not reference instance variables

Modifier – Final

Final variable

Value can not be changed

Must be initialized in every constructor

Attempts to modify final are caught at compile time

With reference variable, does NOT make object

immutable

Final static variable

Used for constants

Example

final static int Increment = 5;

Modifier – Final

Final method

Method can not be overridden by subclass

Private methods are implicitly final

Final class

Class can not be extended

Methods in final class are implicitly final

Example – class String is final

